不多说,直接上代码。

  对流量原始日志进行流量统计,将不同省份的用户统计结果输出到不同文件。

代码

package zhouls.bigdata.myMapReduce.areapartition;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;

public class FlowBean implements WritableComparable<FlowBean>{

private String phoneNB;
private long up_flow;
private long d_flow;
private long s_flow;

//在反序列化时,反射机制需要调用空参构造函数,所以显示定义了一个空参构造函数
public FlowBean(){}

//为了对象数据的初始化方便,加入一个带参的构造函数
public FlowBean(String phoneNB, long up_flow, long d_flow) {
this.phoneNB = phoneNB;
this.up_flow = up_flow;
this.d_flow = d_flow;
this.s_flow = up_flow + d_flow;
}

public String getPhoneNB() {
return phoneNB;
}

public void setPhoneNB(String phoneNB) {
this.phoneNB = phoneNB;
}

public long getUp_flow() {
return up_flow;
}

public void setUp_flow(long up_flow) {
this.up_flow = up_flow;
}

public long getD_flow() {
return d_flow;
}

public void setD_flow(long d_flow) {
this.d_flow = d_flow;
}

public long getS_flow() {
return s_flow;
}

public void setS_flow(long s_flow) {
this.s_flow = s_flow;
}

//将对象数据序列化到流中
public void write(DataOutput out) throws IOException {

out.writeUTF(phoneNB);
out.writeLong(up_flow);
out.writeLong(d_flow);
out.writeLong(s_flow);

}

//从数据流中反序列出对象的数据
//从数据流中读出对象字段时,必须跟序列化时的顺序保持一致
public void readFields(DataInput in) throws IOException {

phoneNB = in.readUTF();
up_flow = in.readLong();
d_flow = in.readLong();
s_flow = in.readLong();

}

@Override
public String toString() {

return "" + up_flow + "\t" +d_flow + "\t" + s_flow;
}

public int compareTo(FlowBean o) {
return s_flow>o.getS_flow()?-1:1;
}

}

package zhouls.bigdata.myMapReduce.areapartition;

import java.util.HashMap;

import org.apache.hadoop.mapreduce.Partitioner;

public class AreaPartitioner<KEY, VALUE> extends Partitioner<KEY, VALUE>{

private static HashMap<String,Integer> areaMap = new HashMap<>();

static{
areaMap.put("135", 0);
areaMap.put("136", 1);
areaMap.put("137", 2);
areaMap.put("138", 3);
areaMap.put("139", 4);
}

@Override
public int getPartition(KEY key, VALUE value, int numPartitions) {
//从key中拿到手机号,查询手机归属地字典,不同的省份返回不同的组号

int areaCoder = areaMap.get(key.toString().substring(0, 3))==null?5:areaMap.get(key.toString().substring(0, 3));

return areaCoder;
}

}

package zhouls.bigdata.myMapReduce.areapartition;

import java.io.IOException;

import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import zhouls.bigdata.myMapReduce.areapartition.FlowBean;

/**
* 对流量原始日志进行流量统计,将不同省份的用户统计结果输出到不同文件
* 需要自定义改造两个机制:
* 1、改造分区的逻辑,自定义一个partitioner
* 2、自定义reduer task的并发任务数
*
*
*
*/
public class FlowSumArea implements Tool {

public static class FlowSumAreaMapper extends Mapper<LongWritable, Text, Text, FlowBean>{

@Override
protected void map(LongWritable key, Text value,Context context)
throws IOException, InterruptedException {

//拿一行数据
String line = value.toString();
//切分成各个字段
String[] fields = StringUtils.split(line, "\t");

//拿到我们需要的字段
String phoneNB = fields[1];
long u_flow = Long.parseLong(fields[7]);
long d_flow = Long.parseLong(fields[8]);

//封装数据为kv并输出
context.write(new Text(phoneNB), new FlowBean(phoneNB,u_flow,d_flow));

}

}

public static class FlowSumAreaReducer extends Reducer<Text, FlowBean, Text, FlowBean>{

@Override
protected void reduce(Text key, Iterable<FlowBean> values,Context context)
throws IOException, InterruptedException {

long up_flow_counter = 0;
long d_flow_counter = 0;

for(FlowBean bean: values){

up_flow_counter += bean.getUp_flow();
d_flow_counter += bean.getD_flow();

}

context.write(key, new FlowBean(key.toString(), up_flow_counter, d_flow_counter));

}

}

public int run(String[] arg0) throws Exception {

Configuration conf = new Configuration();
Job job = Job.getInstance(conf);

job.setJarByClass(FlowSumArea.class);

job.setMapperClass(FlowSumAreaMapper.class);
job.setReducerClass(FlowSumAreaReducer.class);

//设置我们自定义的分组逻辑定义
job.setPartitionerClass(AreaPartitioner.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);

//设置reduce的任务并发数,应该跟分组的数量保持一致
job.setNumReduceTasks(1);

FileInputFormat.addInputPath(job, new Path(arg0[0]));// 文件输入路径
FileOutputFormat.setOutputPath(job, new Path(arg0[1]));// 文件输出路径
job.waitForCompletion(true);

return 0;

}

public static void main(String[] args) throws Exception {

//集群路径
// String[] args0 = { "hdfs://HadoopMaster:9000/flowSumArea/HTTP_20130313143750.dat",
// "hdfs://HadoopMaster:9000/out/flowSumArea"};

//集群路径
String[] args0 = { "./data/flowSumArea/HTTP_20130313143750.dat",
"./out/flowSumArea/"};

int ec = ToolRunner.run( new Configuration(), new FlowSumArea(), args0);
System. exit(ec);

}

@Override
public Configuration getConf() {
// TODO Auto-generated method stub
return null;
}

@Override
public void setConf(Configuration arg0) {
// TODO Auto-generated method stub

}

}

Hadoop MapReduce编程 API入门系列之网页流量版本1(二十一)的更多相关文章

  1. Hadoop MapReduce编程 API入门系列之网页流量版本1(二十二)

    不多说,直接上代码. 对流量原始日志进行流量统计,将不同省份的用户统计结果输出到不同文件. 代码 package zhouls.bigdata.myMapReduce.flowsum; import ...

  2. Hadoop MapReduce编程 API入门系列之网页排序(二十八)

    不多说,直接上代码. Map output bytes=247 Map output materialized bytes=275 Input split bytes=139 Combine inpu ...

  3. Hadoop MapReduce编程 API入门系列之小文件合并(二十九)

    不多说,直接上代码. Hadoop 自身提供了几种机制来解决相关的问题,包括HAR,SequeueFile和CombineFileInputFormat. Hadoop 自身提供的几种小文件合并机制 ...

  4. Hadoop MapReduce编程 API入门系列之压缩和计数器(三十)

    不多说,直接上代码. Hadoop MapReduce编程 API入门系列之小文件合并(二十九) 生成的结果,作为输入源. 代码 package zhouls.bigdata.myMapReduce. ...

  5. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本3(九)

    不多说,直接上干货! 下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 下面是版本2. Hadoop MapReduce编程 API入门系列之挖掘气象数 ...

  6. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本2(十)

    下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 这篇博文,包括了,实际生产开发非常重要的,单元测试和调试代码.这里不多赘述,直接送上代码. MRUni ...

  7. Hadoop MapReduce编程 API入门系列之join(二十六)(未完)

    不多说,直接上代码. 天气记录数据库 Station ID Timestamp Temperature 气象站数据库 Station ID Station Name 气象站和天气记录合并之后的示意图如 ...

  8. Hadoop MapReduce编程 API入门系列之MapReduce多种输入格式(十七)

    不多说,直接上代码. 代码 package zhouls.bigdata.myMapReduce.ScoreCount; import java.io.DataInput; import java.i ...

  9. Hadoop MapReduce编程 API入门系列之自定义多种输入格式数据类型和排序多种输出格式(十一)

    推荐 MapReduce分析明星微博数据 http://git.oschina.net/ljc520313/codeexample/tree/master/bigdata/hadoop/mapredu ...

随机推荐

  1. Python 遍历目录

    代码: 1.递归使用遍历目录 import os def scanfile(path): filelist = os.listdir(path) allfile = [] for filename i ...

  2. ANN:DNN结构演进History—LSTM网络

    为了保持文章系列的连贯性,参考这个文章: DNN结构演进History-LSTM_NN 对于LSTM的使用:谷歌语音转录背后的神经网络 摘要: LSTM使用一个控制门控制参数是否进行梯度计算,以此避免 ...

  3. Matlab数组创建

    只用C语言,不用Matlab这种魔咒还是要打破的.Matlab是科学计算的常用工具,既然以前没用过,现在开始学吧...... 1.   向量的创建 1)直接输入: 行向量:a=[1,2,3,4,5] ...

  4. Swiper 3D flow轮播使用方法

    swiper 的3d轮播效果,移动端适用 (1). 如需使用Swiper的3d切换首先加载3D flow插件(js和css). <head> <link rel="styl ...

  5. Day6 函数和模块的使用

    函数和模块的使用 在讲解本章节的内容之前,我们先来研究一道数学题,请说出下面的方程有多少组正整数解. $$x_1 + x_2 + x_3 + x_4 = 8$$ 事实上,上面的问题等同于将8个苹果分成 ...

  6. 在阿里云的ubuntu服务器上安装xampp时出现unable to realloc unable to realloc 8380000 bytes错误

    在阿里云的ubuntu服务器上安装xampp时出现unable to realloc unable to realloc 8380000 bytes错误 解决:增加Swap空间(阿里云缺省没有分配任何 ...

  7. 【Codeforces 91B】Queue

    [链接] 我是链接,点我呀:) [题意] [题解] 对于每个i,用二分的方法求出来y所在的位置j. 可以这样求. 假设现在二分到了位置mid. 那么随便用个rmq求出来mid..n这一段的最小值tem ...

  8. Spring 单例模式和多例模式

    1.Spring中的对象默认都是 单例模式. 2.使用 @Scope("prototype") 注解来使对象成为多例模式. 3.通过@Autowired 注入的Service 或者 ...

  9. 使用idea创建maven项目时 需要注意的问题

    截几张图来说明吧 上面的红色框如果不选中  将来创建的工程中没有webapp目录以及下面的子目录 选中之后  然后一直“下一步”  直到工程创建 但是我第一次按照正确的方式操作时  工程中并没有src ...

  10. (25)Spring Boot使用自定义的properties【从零开始学Spring Boot】

    spring boot使用application.properties默认了很多配置.但需要自己添加一些配置的时候,我们应该怎么做呢. 若继续在application.properties中添加 如: ...