[cf1434E]A Convex Game
暴力求SG,结论:每一个序列的SG上限为$\sqrt{2\max a_{i}}+1$
证明:将SG的转移看作一张DAG,归纳每一个点的SG值不超过其开始的最长路,显然成立
那么本题中最长路即在$a_{i}$中最多能选多少次,假设选择的权值依次为$v_{1},v_{2},...,v_{m}$,则$v_{i+1}-v_{i}\ge i$,累加即$v_{m}-v_{1}\ge \frac{m(m-1)}{2}$,放缩得$(m-1)^{2}<2v_{m}$,$m$也即SG的上限为$\sqrt{2\max a_{i}}+1$
考虑dp,令$f_{i,j}$表示最后两次分别选了$a_{i}$和$a_{j}$的SG值,转移为$f_{i,j}=mex(\{f_{k,i}|a_{k}-a_{i}>a_{i}-a_{j}\})$,利用$k$的单调性,倒序枚举$j$,可以做到$o(n^{2})$,最终答案即为$mex(\{f_{i,0}|1\le i\le n\})$
令$g_{i,j}=\min_{f_{i,k}>j}k$,根据上面的结论,$g$的总数量为$o(n\sqrt{n})$,考虑直接转移$g$
根据单调性,有$g_{i,j}\ge g_{i,j-1}$,这也就保证了$f_{i,g_{i,j}}$后面的集合包含了$[1,j)$,同时$j$也需要出现,因此即要求$\exists k,a_{g_{i,j}}>2a_{i}-a_{k}且f_{k,i}=j$,后者又等价于$g_{k,j-1}\le i<g_{k,j}$,贪心求出满足后者的$k$中最大值即可
考虑先枚举$j$,维护线段树,每一次先查询$i$上的值并判断,再令区间$[g_{i,j-1},g_{i,j})$的值对$i$取max,时间复杂度为$o(n\sqrt{n}\log_{2}n)$,略微卡常
进一步优化,由于插入的区间单调递增,因此可以看作对未被修改的部分修改,维护两个并查集,分别表示:1.上一个未被覆盖的点;2.同一种类型的上一个点,时间复杂度为$o(n\sqrt{n}\alpha(n))$

1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 100005
4 #define L (k<<1)
5 #define R (L+1)
6 #define mid (l+r>>1)
7 int t,n,ans,a[N],f[2][N],fa[N],pre[N],v[N];
8 int find(int k){
9 if (fa[k]==k)return k;
10 return fa[k]=find(fa[k]);
11 }
12 int get_pre(int k){
13 if (k==pre[k])return k;
14 return pre[k]=get_pre(pre[k]);
15 }
16 void update(int l,int r,int x){
17 r=get_pre(r);
18 if (v[r])r--;
19 if (l>r)return;
20 while (1){
21 int nex=get_pre(r-1);
22 if (v[nex])nex--;
23 if (nex<l){
24 v[r]=x;
25 return;
26 }
27 fa[r]=nex;
28 r=nex;
29 }
30 }
31 void merge(int l,int r){
32 if ((r<=n)&&(pre[r+1]==r+1)&&(v[r+1]))pre[r+1]=r;
33 r=get_pre(r);
34 while (l<r){
35 pre[r]=r-1;
36 r=get_pre(r-1);
37 }
38 if ((l==r)&&(l>1)&&(v[get_pre(l-1)]))pre[r]=r-1;
39 }
40 int query(int k){
41 return v[find(k)];
42 }
43 int main(){
44 scanf("%d",&t);
45 while (t--){
46 scanf("%d",&n);
47 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
48 int s=0,p=0,flag=0;
49 for(int i=1;i<=n;i++)f[p][i]=1;
50 while (!flag){
51 flag=1;
52 s++;
53 p^=1;
54 for(int i=1;i<=n;i++){
55 fa[i]=pre[i]=i;
56 v[i]=0;
57 }
58 for(int i=n;i;i--){
59 int k=query(i);
60 if(!k)f[p][i]=n+1;
61 else f[p][i]=upper_bound(a+1,a+n+1,2*a[i]-a[k])-a;
62 if (f[p^1][i]>=f[p][i])f[p][i]=f[p^1][i];
63 else{
64 update(f[p^1][i],f[p][i]-1,i);
65 merge(f[p^1][i],f[p][i]-1);
66 }
67 if (f[p][i]<=n)flag=0;
68 }
69 }
70 ans^=s;
71 }
72 if (ans)printf("YES");
73 else printf("NO");
74 }
[cf1434E]A Convex Game的更多相关文章
- [LeetCode] Convex Polygon 凸多边形
Given a list of points that form a polygon when joined sequentially, find if this polygon is convex ...
- Leetcode: Convex Polygon
Given a list of points that form a polygon when joined sequentially, find if this polygon is convex ...
- low-rank 的相关求解方法 (CODE) Low-Rank Matrix Recovery and Completion via Convex Optimization
(CODE) Low-Rank Matrix Recovery and Completion via Convex Optimization 这个是来自http://blog.sina.com.cn/ ...
- 关于shape_trans (ConnectedRegions, ConvexRegions, 'convex')的作用于对比
* crystal.hdev: extraction of hexagonally shaped crystals via local thresholding and region post-pro ...
- 论文阅读之 A Convex Optimization Framework for Active Learning
A Convex Optimization Framework for Active Learning Active learning is the problem of progressively ...
- 凸包(Convex Hull)构造算法——Graham扫描法
凸包(Convex Hull) 在图形学中,凸包是一个非常重要的概念.简明的说,在平面中给出N个点,找出一个由其中某些点作为顶点组成的凸多边形,恰好能围住所有的N个点. 这十分像是在一块木板上钉了N个 ...
- convex optimization
##凸优化总结所有这些想法基本是来自于书籍[convex optimization](http://book.douban.com/subject/1888111/),主要包括凸优化的基本理论,主要的 ...
- Convex Hull 实现理论+自制Python代码
Convex Hull 概述 计算n维欧式空间散点集的凸包,有很多的方法.但是如果要实现快速运算则其难点在于:如何快速判断散点集的成员是否是在凸集的内部.如果可以简化判断的运算过程,则可以极大简化迭代 ...
- Convex(扫描线降维)
Convex Time Limit: 10000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Sub ...
随机推荐
- HPE ProLiant 系列服务器Microsoft Windows 2008 R2系统下网卡绑定方法
HPE Network Configuration Utility(以下简称NCU) 网卡绑定工具,用户可以通过该工具很方便的把服务器的多个网卡捆绑到一起以达到容错和增加可用带宽的目的. 1.打开NC ...
- Filter防火墙
实验简介 实验属于防火墙系列 实验目的 了解个人防火墙的基本工作原理: 掌握Filter防火墙的配置. 实验环境 一台安装了win7操作系统的主机. 预备知识 防火墙 防火墙(Firewall)是一项 ...
- linux下修改IP地址的方法
linux下修改IP地址的方法 1.网卡的命名规则 在centos7中,en表示着:ethernet以太网,即现在所用的局域网,enX(X常见有以下3种类型) 2.IP地址的临时修改(重启后失效) 查 ...
- NOI2016区间bzoj4653(线段树,尺取法,区间离散化)
题目描述 在数轴上有 \(N\) 个闭区间 \([l_1,r_1],[l_2,r_2],...,[l_n,r_n]\) .现在要从中选出 \(M\) 个区间,使得这 \(M\) 个区间共同包含至少一个 ...
- Java(11)方法详细介绍
作者:季沐测试笔记 原文地址:https://www.cnblogs.com/testero/p/15201577.html 博客主页:https://www.cnblogs.com/testero ...
- Vulnhub实战-grotesque3靶机👻
Vulnhub实战-grotesque3靶机 靶机地址:http://www.vulnhub.com/entry/grotesque-301,723/ 1.靶机描述 2.主机探测,端口扫描 我们在vm ...
- JAVA String、StringBuffer、StringBuilder类解读
JAVA String.StringBuffer.StringBuilder类解读 字符串广泛应用 在 Java 编程中,在 Java 中字符串属于对象,Java 提供了 String 类来创建和操作 ...
- 周末愉快--css画大熊猫
周末找了点轻松的话题,css画大熊猫. 先上效果图 欢迎竞猜大熊猫到底说了什么?? 再上源码 <!DOCTYPE html> <html lang="en"> ...
- 【Linux命令063】Linux非常简单常用的入门命令
Linux常用命令 这是一篇我在公众号上发布的文章,还算较为受欢迎. 博客园这边荒废好长时间了,主要是最近一年经常撰写的文章都是Linux相关的入门文章. 不知道是否能通过博客园的首页审核. 1.cd ...
- [no code][scrum meeting] Alpha 10
项目 内容 会议时间 2020-04-16 会议主题 用户管理第一版交付 会议时长 15min 参会人员 PM+后端组成员 $( "#cnblogs_post_body" ).ca ...