题目描述

\[\sum_{i=1}^n\sum_{j=1}^m\sum_{k=1}^p\gcd(i\cdot j,i\cdot k,j\cdot k)\times \gcd(i,j,k)\times \left(\frac{\gcd(i,j)}{\gcd(i,k)\times \gcd(j,k)}+\frac{\gcd(i,k)}{\gcd(i,j)\times \gcd(j,k)}+\frac{\gcd(j,k)}{\gcd(i,j)\times \gcd(i,k)}\right)
\]

由于答案可能过大,输出答案对10^9+7109+7取模的值。

输入输出

第一行一个正整数T,为数据组数。

下面T行,每行3个整数,为n,m,p。

输出格式

共T行,每行一个整数,为答案。

输入输出

2
10 12 11
30 20 25

输出样例

25302
573830

Solution

挺巧妙的一个题。

注意到\(\gcd\)的一个性质,我们只考虑一个质因子,设\(i=p^x,j=p^y,k=p^z\),可以得到:

\[\gcd(i,j)=p^{\min(x,y)},\gcd(i,j,k)=p^{\min(x,y,z)}
\]

那么根据这个我们可以尝试着化简题目给出的式子,通分之后把分母提出来,和前面两项乘起来就是:

\[res=\dfrac{\gcd(i,j,k)\times \gcd(i\cdot j,j\cdot k,k\cdot i)}{\gcd(i,j)\times\gcd(j,k)\times\gcd(i,k)}
\]

由于这里只考虑一个质因子,我们可以两边取\(\log\),然后设\(\min(x,y,z)=x\),即\(x\)为最小值,这对答案是没有影响的,那么式子可以变成这样:

\[\log_p(res)=2x+\min(y,y+z-x,z)-(2x+\min(y,z))
\]

可以发现\(y+z-x\geqslant y,y+z-x\geqslant z\),所以可以得到:

\[\log_p(res)=2x+\min(y,z)-(2x+\min(y,z))
\]

所以:

\[\log_p(res)=0,res=1
\]

所以我们可以惊奇的发现,前面两项和分母约掉了,剩下的式子写出来就是:

\[ans=\sum_{i}\sum_{j}\sum_{k}\gcd(i,j)^2+\gcd(j,k)^2+\gcd(i,k)^2
\]

这个直接大力反演就好了。

#include<bits/stdc++.h>
using namespace std; void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
} void print(int x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');} const int maxn = 2e7+10;
const int mod = 1e9+7; int pri[maxn/10],mu[maxn],f[maxn],vis[maxn],tot; void sieve() {
mu[1]=f[1]=1;
for(int i=2;i<maxn;i++) {
if(!vis[i]) pri[++tot]=i,mu[i]=-1,f[i]=1ll*i*i%mod-1;
for(int v,j=1;j<=tot&&i*pri[j]<maxn;j++) {
vis[v=i*pri[j]]=1;
if(i%pri[j]==0) {f[v]=1ll*f[i]*pri[j]%mod*pri[j]%mod;break;}
f[v]=1ll*f[i]*f[pri[j]]%mod,mu[v]=-mu[i];
}
}
for(int i=1;i<maxn;i++) f[i]=(f[i]+f[i-1])%mod;
} int calc(int n,int m) {
int T=1,res=0;
while(T<=min(n,m)) {
int pre=T;T=min(n/(n/T),m/(m/T));
res=(res+1ll*(f[T]-f[pre-1])*(n/T)%mod*(m/T)%mod)%mod;T++;
}return (res+mod)%mod;
} int main() {
sieve();
int T,n,m,p;read(T);
while(T--) read(n),read(m),read(p),write(((1ll*calc(n,m)*p%mod+1ll*calc(n,p)*m%mod)%mod+1ll*calc(m,p)*n%mod)%mod);
return 0;
}

[luogu5176] 公约数的更多相关文章

  1. Luogu5176 公约数 莫比乌斯反演、线性筛

    传送门 好像是我们联考时候的题目? 一个结论:\(\gcd(ij,ik,jk) \times \gcd(i,j,k) = \gcd(i,j) \times \gcd(i,k) \times \gcd( ...

  2. xgzc— math 专题训练(一)

    Lucas定理 当\(p\)是质数时,有\((^n_m)\equiv(^{n/p}_{m/p}) * (^{n\%p}_{m\%p}) \pmod{p}\) 狄利克雷卷积 定义:\((f*g)(n)= ...

  3. C语言辗转相除法求2个数的最小公约数

    辗转相除法最大的用途就是用来求两个数的最大公约数. 用(a,b)来表示a和b的最大公约数. 有定理: 已知a,b,c为正整数,若a除以b余c,则(a,b)=(b,c). (证明过程请参考其它资料) 例 ...

  4. 求两个数字的最大公约数-Python实现,三种方法效率比较,包含质数打印质数的方法

    今天面试,遇到面试官询求最大公约数.小学就学过的奥数题,居然忘了!只好回答分解质因数再求解! 回来果断复习下,常用方法辗转相除法和更相减损法,小学奥数都学过,很简单,就不细说了,忘了的话可以百度:ht ...

  5. BZOJ4488: [Jsoi2015]最大公约数

    Description 给定一个长度为 N 的正整数序列Ai对于其任意一个连续的子序列{Al,Al+1...Ar},我们定义其权值W(L,R )为其长度与序列中所有元素的最大公约数的乘积,即W(L,R ...

  6. 求N个数的最大公约数和最小公倍数(转)

    除了分解质因数,还有另一种适用于求几个较小数的最大公约数.最小公倍数的方法 下面是数学证明及算法实现 令[a1,a2,..,an] 表示a1,a2,..,an的最小公倍数,(a1,a2,..,an)表 ...

  7. 辗转相除法求最大公约数,非goto

    #include<iostream> using namespace std; //不推荐用goto,当然用它更快 //辗转相除法求两数的最大公约数 int gcd(long int a, ...

  8. ZOJ Problem Set - 1337 Pi 最大公约数

    这道题目的关键在于怎么求两个整数的最大公约数,这里正好复习一下以前的知识,如下: 1.设整数a和b 2.如果a和b都为0,则二者的最大公约数不存在 3.如果a或b等于0,则二者的最大公约数为非0的一个 ...

  9. Euclid求最大公约数

    Euclid求最大公约数算法 #include <stdio.h> int gcd(int x,int y){ while(x!=y){ if(x>y) x=x-y; else y= ...

随机推荐

  1. 绝地求生大逃杀BE启动失败,应用程序无法正常启动

    今日更新绝地求生大逃杀后部分客户反馈绝地求生点击启动提示BE安装,应用程序无法启动 问题原因:经过排查发现,客户开启过超级工作站运行过游戏,在系统镜像包中保留了旧版的BE服务,致使新版BE无法安装,冲 ...

  2. Process Monitor工具找网吧广告

    很多网吧经常有遇到有一些客户机多了一些广告或者是可能是有中毒的情况.Process Monitor 软件可以方便的监视和记录系统各程序的进程线程,注册表,网络,文件读写等活动. 1,开超级用户,双击打 ...

  3. SpringBoot学习:整合shiro(验证码功能和登录次数限制功能)

    项目下载地址:http://download.csdn.NET/detail/aqsunkai/9805821 (一)验证码 首先login.jsp里增加了获取验证码图片的标签: <body s ...

  4. Andorid自定义attr的各种坑

    本文来自网易云社区 作者:孙有军 在开发Andorid应用程序中,经常会自定义View来实现各种各样炫酷的效果,在实现这吊炸天效果的同时,我们往往会定义很多attr属性,这样就可以在XML中配置我们想 ...

  5. GitLab 自动触发 Jenkins 构建

    GitLab 是当前应用非常广泛的 Git Hosting 工具,Jenkins 是非常牛逼的持续集成工具.尽管 GitLab 有内建的 GitLab CI,但它远没有 Jenkins 那么强大好用. ...

  6. Qt 3D Studio 1.0 Resleased

    Qt 这家伙又整出一个新东西了,Qt 3D Studio 1.0 新闻链接:https://blog.qt.io/blog/2017/11/30/qt-3d-studio-1-0-released/ ...

  7. Python学习笔记(一)一一一环境安装错误总结

    第三方库安装 1   windows存在多个版本的python,pip安装Python库失败 解决方案:进入对应官网下载安装包,步骤:1 下载安装包到C:\Python36\Lib\site-pack ...

  8. Python-S9——Day82-CRM项目实战

    1.权限的概念: 2.RBAC的设计: 3.注册登录用户所有权限到session中: 4.权限的校验: 5.基于中间件的权限校验: 1.权限的概念: 1.1 项目与应用: Project App 1. ...

  9. Map Reduce Application(Partitioninig/Binning)

    Map Reduce Application(Partitioninig/Group data by a defined key) Assuming we want to group data by ...

  10. UVa 340 - Master-Mind Hints 解题报告 - C语言

    1.题目大意 比较给定序列和用户猜想的序列,统计有多少数字位置正确(x),有多少数字在两个序列中都出现过(y)但位置不对. 2.思路 这题自己思考的思路跟书上给的思路差不多.第一个小问题——位置正确的 ...