题意

考虑式子前面那段其实是\((n-1)*\frac{n*(n+1)}{2}\),因为每个后缀出现了\(n-1\)次,后缀总长为\(\frac{n*(n+1)}{2}\)。

现在考虑后面怎么求:

\(\sum\limits_{i=1}^{n}\sum\limits_{j=i+1}^nlcp(sa_i,sa_j)\)

我们知道后面那个可以转化成\(height\)数组的\(RMQ\)问题,于是我们转而考虑每个\(height_i\)的贡献。

我们对于每个\(i\)找到左边第一个小于\(height_i\)的位置\(j\),右边第一个小于等于\(height_i\)的位置\(k\)(注意条件不同,避免计重),那么\(height_i\)的贡献即为\(height_i*(i-j)*(k-i)\)

这个找的过程显然可以单调栈解决,注意\(height\)从\(2\)开始算(因为\([l,r]\)的\(height\)从\(l+1\)开始,这题所有数据的\(height_1\)都是\(0\),所以能过)。

code:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=500010;
int n,m,top;
int sa[maxn],rk[maxn],oldrk[maxn],id[maxn],tmpid[maxn],cnt[maxn],height[maxn],sta[maxn],L[maxn],R[maxn];
char s[maxn];
inline bool check(int x,int y,int k){return oldrk[x]==oldrk[y]&&oldrk[x+k]==oldrk[y+k];}
inline void sa_build()
{
m=300;
for(int i=1;i<=n;i++)cnt[rk[i]=s[i]]++;
for(int i=1;i<=m;i++)cnt[i]+=cnt[i-1];
for(int i=n;i;i--)sa[cnt[rk[i]]--]=i;
for(int t=1;t<=n;t<<=1)
{
int tot=0;
for(int i=n-t+1;i<=n;i++)id[++tot]=i;
for(int i=1;i<=n;i++)if(sa[i]>t)id[++tot]=sa[i]-t;
tot=0;
memset(cnt,0,sizeof(cnt));
for(int i=1;i<=n;i++)cnt[tmpid[i]=rk[id[i]]]++;
for(int i=1;i<=m;i++)cnt[i]+=cnt[i-1];
for(int i=n;i;i--)sa[cnt[tmpid[i]]--]=id[i];
memcpy(oldrk,rk,sizeof(rk));
for(int i=1;i<=n;i++)rk[sa[i]]=check(sa[i-1],sa[i],t)?tot:++tot;
m=tot;
if(m==n)break;
}
for(int i=1,j=0;i<=n;i++)
{
if(j)j--;
while(s[i+j]==s[sa[rk[i]-1]+j])j++;
height[rk[i]]=j;
}
}
inline ll calc()
{
ll res=0;
sta[++top]=1;
for(int i=2;i<=n;i++)
{
while(top&&height[sta[top]]>=height[i])R[sta[top--]]=i;
L[i]=sta[top];
sta[++top]=i;
}
while(top)R[sta[top--]]=n+1;
for(int i=2;i<=n;i++)res+=1ll*height[i]*(i-L[i])*(R[i]-i);
return res;
}
int main()
{
scanf("%s",s+1);n=strlen(s+1);
sa_build();
printf("%lld\n",1ll*(n-1)*n*(n+1)/2-2*calc());
return 0;
}

luoguP4248 [AHOI2013]差异的更多相关文章

  1. BZOJ 3238: [Ahoi2013]差异 [后缀数组 单调栈]

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2326  Solved: 1054[Submit][Status ...

  2. bzoj 3238 Ahoi2013 差异

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2357  Solved: 1067[Submit][Status ...

  3. BZOJ 3238: [Ahoi2013]差异 [后缀自动机]

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2512  Solved: 1140[Submit][Status ...

  4. BZOJ_3238_[Ahoi2013]差异_后缀自动机

    BZOJ_3238_[Ahoi2013]差异_后缀自动机 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sam ...

  5. BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈

    BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao ...

  6. 【LG4248】[AHOI2013]差异

    [LG4248][AHOI2013]差异 题面 洛谷 题解 后缀数组版做法戳我 我们将原串\(reverse\),根据后缀自动机的性质,两个后缀的\(lcp\)一定是我们在反串后两个前缀的\(lca\ ...

  7. 【BZOJ3238】[AHOI2013]差异

    [BZOJ3238][AHOI2013]差异 题面 给定字符串\(S\),令\(T_i\)表示以它从第\(i\)个字符开始的后缀.求 \[ \sum_{1\leq i<j\leq n}len(T ...

  8. P4248 [AHOI2013]差异 解题报告

    P4248 [AHOI2013]差异 题目描述 给定一个长度为 \(n\) 的字符串 \(S\),令 \(T_i\) 表示它从第 \(i\) 个字符开始的后缀.求 \[\displaystyle \s ...

  9. 【BZOJ 3238】 3238: [Ahoi2013]差异(SAM)

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 3047  Solved: 1375 Description In ...

随机推荐

  1. win7 Adobe flash player 无法在线更新

    1.win7 Adobe flash player 无法在线更新,提示应用程序初始化错误 解决方法: 1.https://www.flash.cn/看一下支持的版本,网上找对应版本离线包下载安装即可 ...

  2. docker搭建kafka环境&&Golang生产和消费

    docker 搭建kafka环境 version: '2' services: zk1: image: confluentinc/cp-zookeeper:latest hostname: zk1 c ...

  3. java(二)变量

    基础数据类型: 数值型:整型(byte.short.int.long).浮点型(float.double)java各整数类型有固定的表数范围和字段长度,不受具体os的影响,以保持java的可移植性:j ...

  4. Batchnorm原理详解

    Batchnorm原理详解 前言:Batchnorm是深度网络中经常用到的加速神经网络训练,加速收敛速度及稳定性的算法,可以说是目前深度网络必不可少的一部分. 本文旨在用通俗易懂的语言,对深度学习的常 ...

  5. MongoDB创建集合和删除集合05-14学习笔记

    MongoDB 是一个基于分布式文件存储的数据库.由 C++ 语言编写,是一个基于分布式文件存储的开源数据库系统.旨在为 WEB 应用提供可扩展的高性能数据存储解决方案. MongoDB 是一个介于关 ...

  6. 【前端知识体系-JS相关】你真的了解JavaScript编译解析的流程吗?

    1. JS编译解析的流程 1.1 JS运行分三步 语法分析(通篇扫描是否有语法错误),预编译(发生在函数执行的前一刻),解释执行(一行行执行). 1.2 预编译执行分五步 创建AO对象(Activat ...

  7. hive引擎的选择:tez和spark

    背景 mr引擎在hive 2中将被弃用.官方推荐使用tez或spark等引擎. 选择 tez 使用有向无环图.内存式计算. spark 可以同时作为批式和流式的处理引擎,减少学习成本. 问题& ...

  8. MySQL for OPS 10:MyCAT 分布式架构

    写在前面的话 在学习的索引的时候,有提到,当数据表数据达到 800W 的时候,索引的性能就开始逐步下降.对于一个公司而言,主要业务数据表达到 1000W 都很容易.同时这张表一般都是业务常用的表,操作 ...

  9. wpf 单例模式和异常处理 (原发布 csdn 2017-04-12 20:34:12)

    第一次写博客,如有错误,请大家及时告知,本人立即改之. 如果您有好的想法或者建议,我随时与我联系. 如果发现代码有误导时,请与我联系,我立即改之. 好了不多说,直接贴代码. 一般的错误,使用下面三个就 ...

  10. java基础(15):常用API(Object、String、StringBuffer)

    1. Java的API及Object类 在以前的学习过程中,我们都在学习对象基本特征.对象的使用以及对象的关系.接下来我们开始使用对象做事情,那么在使用对象做事情之前,我们要学习一些API中提供的常用 ...