At each step the weight vector is moved in the direction of the greatest rate of decrease of the error function,

and so this approach is known as gradient descent(梯度下降法) or steepest descent(最速下降法).

Techniques that use the whole data set at once are called batch methods.

With the method of gradient descent used to perform the training, the advantages of batch learning

include the following:

1)accurate estimation of the gradient vector(i.e., the derivative of the cost function with respect to the weight vector w),

thereby guaranteeing, under simple conditions, convergence of the method of steepest descent to a local minimum;

2)parallalization of the learning process.

However, from a practical perspective, batch learning is rather demanding in terms of storage requirements.

#include <iostream>
#include <vector>
#include <cmath>
#include <cfloat>

/*批量梯度下降法*/
int main() {
    double datax[]={1,2,3,4,5};
    double datay[]={1,1,2,2,4};
    std::vector<double> v_datax,v_datay;

for(size_t i=0;i<sizeof(datax)/sizeof(datax[0]);++i) {
        v_datax.push_back(datax[i]);
        v_datay.push_back(datay[i]);
    }

double a=0,b=0;
    double J=0.0;

for(std::vector<double>::iterator iterx=v_datax.begin(),itery=v_datay.begin();iterx!=v_datax.end(),itery!=v_datay.end();++iterx,++itery) {
        J+=(a+b*(*iterx)-*itery)*(a+b*(*iterx)-*itery);
    }
    J=J*0.5/v_datax.size();
                            
    while(true) {
        double grad0=0,grad1=0;
        for(std::vector<double>::iterator iterx=v_datax.begin(),itery=v_datay.begin();iterx!=v_datax.end(),itery!=v_datay.end();++iterx,++itery) {
            grad0+=(a+b*(*iterx)-*itery);
            grad1+=(a+b*(*iterx)-*itery)*(*iterx);
        }

grad0=grad0/v_datax.size();
        grad1=grad1/v_datax.size();

//0.03为学习率阿尔法
        a=a-0.03*grad0;
        b=b-0.03*grad1;
        double MSE=0;
        
        for(std::vector<double>::iterator iterx=v_datax.begin(),itery=v_datay.begin();iterx!=v_datax.end(),itery!=v_datay.end();++iterx,++itery) {
            MSE+=(a+b*(*iterx)-*itery)*(a+b*(*iterx)-*itery);
        }
        MSE=MSE*0.5/v_datax.size();
        
        if(std::abs(J-MSE)<0.0000001)
            break;
        J=MSE;
    }

std::cout<<"批量梯度下降法得到的结果:"<<std::endl;
    std::cout<<"a = "<<a<<std::endl;
    std::cout<<"b = "<<b<<std::endl;

return 0;
}

In a statistical context, batch learning may be viewed as a form of statistical inference. It is therefore well suited

for solving nonlinear regression problems.

批量梯度下降(Batch gradient descent) C++的更多相关文章

  1. 梯度下降(Gradient Descent)小结

    在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法.这里就对梯度下降法做一个完整的总结. 1. 梯度 在微 ...

  2. 梯度下降(Gradient Descent)

    在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法.这里就对梯度下降法做一个完整的总结. 1. 梯度 在微 ...

  3. 梯度下降(Gradient Descent)相关概念

    梯度,直观理解: 梯度: 运算的对像是纯量,运算出来的结果会是向量在一个标量场中, 梯度的计算结果会是"在每个位置都算出一个向量,而这个向量的方向会是在任何一点上从其周围(极接近的周围,学过 ...

  4. ML:梯度下降(Gradient Descent)

    现在我们有了假设函数和评价假设准确性的方法,现在我们需要确定假设函数中的参数了,这就是梯度下降(gradient descent)的用武之地. 梯度下降算法 不断重复以下步骤,直到收敛(repeat ...

  5. 随机梯度下降 Stochastic gradient descent

    梯度下降法先随机给出参数的一组值,然后更新参数,使每次更新后的结构都能够让损失函数变小,最终达到最小即可. 在梯度下降法中,目标函数其实可以看做是参数的函数,因为给出了样本输入和输出值后,目标函数就只 ...

  6. 多变量线性回归时使用梯度下降(Gradient Descent)求最小值的注意事项

    梯度下降是回归问题中求cost function最小值的有效方法,对大数据量的训练集而言,其效果要 好于非迭代的normal equation方法. 在将其用于多变量回归时,有两个问题要注意,否则会导 ...

  7. 随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )的公式对比、实现对比[转]

    梯度下降(GD)是最小化风险函数.损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正. 下面的h(x)是要拟 ...

  8. 【转】 随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )的公式对比、实现对比

    梯度下降(GD)是最小化风险函数.损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正. 下面的h(x)是要拟 ...

  9. batch gradient descent(批量梯度下降) 和 stochastic gradient descent(随机梯度下降)

    批量梯度下降是一种对参数的update进行累积,然后批量更新的一种方式.用于在已知整个训练集时的一种训练方式,但对于大规模数据并不合适. 随机梯度下降是一种对参数随着样本训练,一个一个的及时updat ...

  10. 机器学习-随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )

    梯度下降(GD)是最小化风险函数.损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正. 下面的h(x)是要拟 ...

随机推荐

  1. java攻城狮之路--复习xml&dom_pull编程续

    本章节我们要学习XML三种解析方式: 1.JAXP DOM 解析2.JAXP SAX 解析3.XML PULL 进行 STAX 解析 XML 技术主要企业应用1.存储和传输数据 2.作为框架的配置文件 ...

  2. dubbo之延迟暴露

    延迟暴露 如果你的服务需要预热时间,比如初始化缓存,等待相关资源就位等,可以使用 delay 进行延迟暴露. 延迟 5 秒暴露服务 <dubbo:service delay="5000 ...

  3. POJ 3070 - 快速矩阵幂求斐波纳契数列

    这题并不复杂. 设$A=\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ 由题中公式: $\begin{pmatrix}f(n+1) & ...

  4. Tomcat服务器安装与第一个jsp网页程序

    1.安装tomcat服务器之前需要,先安装相应版本的jdk,个人理解Tomcat的大部分功能是使用了java的 jdk jar包的. jdk包下载方式网上可以查到 下载完后可以解压到一个指定目录,并在 ...

  5. Lazarus Reading XML- with TXMLDocument and TXPathVariable

    也就是使用XPath的方式,具体语法规则查看http://www.w3school.com.cn/xpath/xpath_syntax.asp,说明得相当详细.这里列举例子是说明在Lazarus/FP ...

  6. Java中IO对象的输入输出流

    输入流: public void inputDemo () throws IOException { //文件名称 String fileName = "d:\\aaa.txt"; ...

  7. EF-Linq

    一丶基本语法(from a in Table where a.id="001" select a).Tolist(); 隐式内连接from a in table1 join b i ...

  8. join 和 left join 和 right join的区别?

    join等价于 inner join 是内连接 ,返回两个表都有的符合条件的行. left join 是左连接,返回坐表中所有的行以及右表中符合条件的行. right join右连接,是返回右表中所有 ...

  9. (1)搜索广告CTR预估

    https://www.cnblogs.com/futurehau/p/6181008.html 一.广告投放系统 广告系统包含多个子系统.除了上图所示的广告投放系统外,还包含商业系统(广告库的获得) ...

  10. ThinkPHP5.1安装

    安装 ====== 按照官方的推荐方式,推荐使用composer方式安装 TP5.1环境要求 PHP >= 5.6.0 PDO PHP Extension MBstring PHP Extens ...