JSOI2008 最小生成树计数
题解:
最小生成树的两个性质:
1、边权相等的边的个数一定。
2、做完边权为w的所有边时,图的连通性相同。
证明:
1、边权相等的边的个数不一样的话就不会都同时是最小生成树了。
2、假设每种方法的做完边权为w的连通性不同,那么假设i边和j边没有同时被选,那么我们完全可以在一种方案中加入i边(或j边),使得连通性增强,而后面费用更大的边用的更少,这样与这是最小生成树矛盾。于是,命题得证。
代码:不知为何,下面程序有bug,什么时候再回来A掉……
type node1=record
x,y,w:longint;
end;
node2=record
l,r,v:longint;
end;
var e:array[..] of node1;
a:array[..] of node2;
i,n,m,ans,sum,xx,yy,cnt,tot,j:longint;
fa:array[..] of longint;
function find(x:longint):longint;
begin
if fa[x]<>x then fa[x]:=find(fa[x]);
exit(fa[x]);
end;
procedure qsort(h,l:longint);
var i,j,m:longint;
tmp:node1;
begin
i:=h;j:=l;m:=e[(i+j)>>].w;
repeat
while e[i].w<m do inc(i);
while e[j].w>m do dec(j);
if i<=j then
begin
tmp:=e[i];e[i]:=e[j];e[j]:=tmp;
inc(i);dec(j);
end;
until i>j;
if i<l then qsort(i,l);
if j>h then qsort(h,j);
end;
procedure init;
begin
readln(n,m);
for i:= to m do with e[i] do readln(x,y,w);
qsort(,m);
cnt:=;tot:=;
for i:= to n do fa[i]:=i;
for i:= to m do
begin
if e[i].w<>e[i-].w then
begin
a[cnt].r:=i-;
inc(cnt);
a[cnt].l:=i;
end;
xx:=find(e[i].x);yy:=find(e[i].y);
if xx<>yy then
begin
fa[xx]:=yy;
inc(a[cnt].v);
inc(tot);
end;
end;
a[cnt].r:=m;
if tot<n- then begin writeln();halt;end;
end;
procedure dfs(x,now,k:longint);
var xx,yy:longint;
begin
if now=a[x].r+ then
begin
if k=a[x].v then inc(sum);
exit;
end;
xx:=find(e[now].x);yy:=find(e[now].y);
if xx<>yy then
begin
fa[xx]:=yy;
dfs(x,now+,k+);
fa[xx]:=xx;fa[yy]:=yy;
end;
dfs(x,now+,k);
end;
procedure main;
begin
for i:= to n do fa[i]:=i;
ans:=;
for i:= to cnt do
begin
sum:=;
dfs(i,a[i].l,);
ans:=(ans*sum) mod ;
for j:=a[i].l to a[i].r do
begin
xx:=find(e[j].x);yy:=find(e[j].y);
if xx<>yy then fa[xx]:=yy;
end;
end;
writeln(ans);
end;
begin
init;
main;
end.
ps:A掉了……
是路径压缩的问题,此题数据规模较小,且没有特殊处理,只是简单的修改父节点,所以可以用朴素的不带路径压缩的find函数
JSOI2008 最小生成树计数的更多相关文章
- bzoj1016 [JSOI2008]最小生成树计数
1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3517 Solved: 1396[Submit][St ...
- BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )
不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...
- 1016: [JSOI2008]最小生成树计数
1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 6200 Solved: 2518[Submit][St ...
- 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)
1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...
- 【bzoj1016】[JSOI2008]最小生成树计数
1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4863 Solved: 1973[Submit][St ...
- bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)
1016: [JSOI2008]最小生成树计数 题目:传送门 题解: 神题神题%%% 据说最小生成树有两个神奇的定理: 1.权值相等的边在不同方案数中边数相等 就是说如果一种方案中权值为1的边有n条 ...
- 【bzoj1016】 JSOI2008—最小生成树计数
http://www.lydsy.com/JudgeOnline/problem.php?id=1016 (题目链接) 题意 求图的最小生成树计数. Solution %了下题解,发现要写矩阵树,15 ...
- [BZOJ]1016 JSOI2008 最小生成树计数
最小生成树计数 题目描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同 ...
- 【BZOJ】1016: [JSOI2008]最小生成树计数 深搜+并查集
最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小 ...
- BZOJ.1016.[JSOI2008]最小生成树计数(Matrix Tree定理 Kruskal)
题目链接 最小生成树有两个性质: 1.在不同的MST中某种权值的边出现的次数是一定的. 2.在不同的MST中,连接完某种权值的边后,形成的连通块的状态是一样的. \(Solution1\) 由这两个性 ...
随机推荐
- liger 的 ligerDialog 的使用。
/// 查看页面,跳出一个新的添加窗口 function AddMessage() { $.ligerDialog.open({ url: UrlAddMessage, height: , width ...
- C语言-人狼羊菜问题-最容易看懂的解决方法及代码
题目描述:农夫需要把狼.羊.菜和自己运到河对岸去,只有农夫能够划船,而且船比较小,除农夫之外每次只能运一种东西,还有一个棘手问题,就是如果没有农夫看着,羊会偷吃菜,狼会吃羊.请考虑一种方法,让农夫能够 ...
- Insist
1.怎么自动截断文本? 如题,当数据库中的数据内容超出了要显示的长度时,如果不采取措施,会破坏页面的布局美观,所以可以采用自动截断文本,需要查看的时候再把其他的内容显示出来. 没截断的时候如下图: 再 ...
- redis缓存的安装和使用
Redis介绍 Redis本质上一个Key/Value数据库,与Memcached类似的NoSQL型数据库,但是他的数据可以持久化的保存在磁盘上,解决了服务重启后数据不丢失的问题,他的值可以是s ...
- The ‘Microsoft.ACE.OLEDB.12.0′ provider is not registered on the local machine. (System.Data)
When you try to import Excel 2007 or later “.xlsx” files into an SQL Server 2008 database you may ge ...
- hdu 3714 Error Curves(三分)
http://acm.hdu.edu.cn/showproblem.php?pid=3714 [题意]: 题目意思看了很久很久,简单地说就是给你n个二次函数,定义域为[0,1000], 求x在定义域中 ...
- 首页banner焦点图自动轮播效果
今天来介绍一下我前两天写一个小任务的时候遇到的一些问题,如果能够有所帮助或者启发,那将是我的荣幸. <div class="banner"> <a class=& ...
- Angular指令封装jQuery日期时间插件datetimepicker实现双向绑定
一放假就高产似母猪了. 00.混乱的前端界 Angular1.x确实是个学习成本很高的框架,刚开始实习那会儿,前端啥也不懂,工头说用Angular,我们这群小弟也只能硬着头皮学.在这之前,前端的东西大 ...
- springMVC+MyBatis+Spring 整合(4) ---解决Spring MVC 对AOP不起作用的问题
解决Spring MVC 对AOP不起作用的问题 分类: SpringMVC3x+Spring3x+MyBatis3x myibaits spring J2EE2013-11-21 11:22 640 ...
- MySQL 主主同步配置和主从配置步骤
★预备知识 : 1.双机热备 对于双机热备这一概念,我搜索了很多资料,最后,还是按照大多数资料所讲分成广义与狭义两种意义来说. 从广义上讲,就是对于重要的服务,使用两台服务器,互相备份,共同执行同一服 ...