题解:

最小生成树的两个性质:

1、边权相等的边的个数一定。

2、做完边权为w的所有边时,图的连通性相同。

证明:

1、边权相等的边的个数不一样的话就不会都同时是最小生成树了。

2、假设每种方法的做完边权为w的连通性不同,那么假设i边和j边没有同时被选,那么我们完全可以在一种方案中加入i边(或j边),使得连通性增强,而后面费用更大的边用的更少,这样与这是最小生成树矛盾。于是,命题得证。

代码:不知为何,下面程序有bug,什么时候再回来A掉……

 type node1=record
x,y,w:longint;
end;
node2=record
l,r,v:longint;
end;
var e:array[..] of node1;
a:array[..] of node2;
i,n,m,ans,sum,xx,yy,cnt,tot,j:longint;
fa:array[..] of longint;
function find(x:longint):longint;
begin
if fa[x]<>x then fa[x]:=find(fa[x]);
exit(fa[x]);
end;
procedure qsort(h,l:longint);
var i,j,m:longint;
tmp:node1;
begin
i:=h;j:=l;m:=e[(i+j)>>].w;
repeat
while e[i].w<m do inc(i);
while e[j].w>m do dec(j);
if i<=j then
begin
tmp:=e[i];e[i]:=e[j];e[j]:=tmp;
inc(i);dec(j);
end;
until i>j;
if i<l then qsort(i,l);
if j>h then qsort(h,j);
end;
procedure init;
begin
readln(n,m);
for i:= to m do with e[i] do readln(x,y,w);
qsort(,m);
cnt:=;tot:=;
for i:= to n do fa[i]:=i;
for i:= to m do
begin
if e[i].w<>e[i-].w then
begin
a[cnt].r:=i-;
inc(cnt);
a[cnt].l:=i;
end;
xx:=find(e[i].x);yy:=find(e[i].y);
if xx<>yy then
begin
fa[xx]:=yy;
inc(a[cnt].v);
inc(tot);
end;
end;
a[cnt].r:=m;
if tot<n- then begin writeln();halt;end;
end;
procedure dfs(x,now,k:longint);
var xx,yy:longint;
begin
if now=a[x].r+ then
begin
if k=a[x].v then inc(sum);
exit;
end;
xx:=find(e[now].x);yy:=find(e[now].y);
if xx<>yy then
begin
fa[xx]:=yy;
dfs(x,now+,k+);
fa[xx]:=xx;fa[yy]:=yy;
end;
dfs(x,now+,k);
end;
procedure main;
begin
for i:= to n do fa[i]:=i;
ans:=;
for i:= to cnt do
begin
sum:=;
dfs(i,a[i].l,);
ans:=(ans*sum) mod ;
for j:=a[i].l to a[i].r do
begin
xx:=find(e[j].x);yy:=find(e[j].y);
if xx<>yy then fa[xx]:=yy;
end;
end;
writeln(ans);
end;
begin
init;
main;
end.

ps:A掉了……

是路径压缩的问题,此题数据规模较小,且没有特殊处理,只是简单的修改父节点,所以可以用朴素的不带路径压缩的find函数

JSOI2008 最小生成树计数的更多相关文章

  1. bzoj1016 [JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3517  Solved: 1396[Submit][St ...

  2. BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )

    不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...

  3. 1016: [JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 6200  Solved: 2518[Submit][St ...

  4. 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)

    1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...

  5. 【bzoj1016】[JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4863  Solved: 1973[Submit][St ...

  6. bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)

    1016: [JSOI2008]最小生成树计数 题目:传送门 题解: 神题神题%%% 据说最小生成树有两个神奇的定理: 1.权值相等的边在不同方案数中边数相等  就是说如果一种方案中权值为1的边有n条 ...

  7. 【bzoj1016】 JSOI2008—最小生成树计数

    http://www.lydsy.com/JudgeOnline/problem.php?id=1016 (题目链接) 题意 求图的最小生成树计数. Solution %了下题解,发现要写矩阵树,15 ...

  8. [BZOJ]1016 JSOI2008 最小生成树计数

    最小生成树计数 题目描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同 ...

  9. 【BZOJ】1016: [JSOI2008]最小生成树计数 深搜+并查集

    最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小 ...

  10. BZOJ.1016.[JSOI2008]最小生成树计数(Matrix Tree定理 Kruskal)

    题目链接 最小生成树有两个性质: 1.在不同的MST中某种权值的边出现的次数是一定的. 2.在不同的MST中,连接完某种权值的边后,形成的连通块的状态是一样的. \(Solution1\) 由这两个性 ...

随机推荐

  1. ubuntu1304下安装boa服务器

    本测试在ubuntu1304下测试,具体步骤如下: 1下载源码:www.boa.org,可在ubuntu下自带的火狐浏览器下载,也可在window下下载,然后再移到ubuntu下: 2打开终端,将bo ...

  2. .NET基础之迭代器

    使用foreach循环是有IEnumerator接口来实现的,IEnumerator即实现了迭代器,在foreach中如何迭代一个集合arrayList呢? 调用arrayLis.GetEnumber ...

  3. CodeForces 18C

    Description Once Bob took a paper stripe of n squares (the height of the stripe is 1 square). In eac ...

  4. 【go】脑补框架 Express beego tornado Flux reFlux React jsx jpg-ios出品

    http://goexpresstravel.com/ 今天 Express 的作者 TJ Holowaychuk 发了一篇文章,正式宣告和 Node.js 拜拜了,转向 Go 语言. Go vers ...

  5. python logging 日志轮转文件不删除问题

    前言 最近在维护项目的python项目代码,项目使用了 python 的日志模块 logging, 设定了保存的日志数目, 不过没有生效,还要通过contab定时清理数据. 分析 项目使用了 logg ...

  6. Unity3d中所有特殊的文件夹

    1.Editor Editor文件夹可以在根目录下,也可以在子目录里,只要名子叫Editor就可以.比如目录:/xxx/xxx/Editor  和 /Editor 是一样的,无论多少个叫Editor的 ...

  7. 预告:准备开个坑,集中学习一下esp32模块

    对这个模块有兴趣的可以关注我以后的更新,寒假会抽空写几篇心得.

  8. 简单3d RPG游戏 之 004 攻击(二)

    人物和怪物的攻击都有CD冷却,在PlayerAttack脚本中添加成员 //冷却倒计时 public float attackTimer; //CD冷却时间 public float coolDown ...

  9. Notepad++ 书签

      Notepad++,有一个书签功能,指定书签是Ctrl+F2,在书签之间移动是按F2来切换,这个可以在几个想查看的数据之间进行快速切换,所以看起来就很方便.

  10. Eat the Trees hdu 1693

    Problem DescriptionMost of us know that in the game called DotA(Defense of the Ancient), Pudge is a ...