Gaussian Mixture Models and the EM algorithm汇总

作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/

1. 漫谈 Clustering (3): Gaussian Mixture Model « Free Mind

http://blog.pluskid.org/?p=39

2. Regularized Gaussian Covariance Estimation

http://freemind.pluskid.org/machine-learning/regularized-gaussian-covariance-estimation/

3. EM算法(Expectation Maximization) - 文墨 - 博客园

http://www.cnblogs.com/sparkwen/p/3199728.html

4. (EM算法)The EM Algorithm - JerryLead - 博客园

http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006936.html

5. 从最大似然到EM算法浅解 - zouxy09的专栏 - CSDN博客

https://blog.csdn.net/zouxy09/article/details/8537620

6. 混合模型初探 - Andrew.Hann - 博客园

http://www.cnblogs.com/LittleHann/p/8446491.html

7. 高斯混合模型(GMM)参数优化及matlab实现_Amy_blog_新浪博客

http://blog.sina.com.cn/s/blog_65956f180100u5zt.html

8. 如何通俗理解EM算法 - 结构之法 算法之道 - CSDN博客

https://blog.csdn.net/v_JULY_v/article/details/81708386

9. 深度理解高斯混合模型(GMM)_用户2741655102_新浪博客

http://blog.sina.com.cn/s/blog_a36a563e0102y2ec.html

10. 高斯混合模型(GMM)及其EM算法的理解 - 小平子的专栏 - CSDN博客

https://blog.csdn.net/jinping_shi/article/details/59613054

笔记:正态变量的线性组合还是正态变量,而正态分布的线性组合可以逼近任意分布。

参考文献:Bishop C M , Bishop C , Bishop C . Pattern Recognition and Machine Learning (Information Science and Statistics)[M]. Springer-Verlag New York, Inc. 2006.

Gaussian Mixture Models and the EM algorithm汇总的更多相关文章

  1. [Scikit-learn] 2.1 Clustering - Gaussian mixture models & EM

    原理请观良心视频:机器学习课程 Expectation Maximisation Expectation-maximization is a well-founded statistical algo ...

  2. [OpenCV] Samples 15: Background Subtraction and Gaussian mixture models

    不错的草稿.但进一步处理是必然的,也是难点所在. Extended: 固定摄像头,采用Gaussian mixture models对背景建模. OpenCV 中实现了两个版本的高斯混合背景/前景分割 ...

  3. [Scikit-learn] 2.1 Clustering - Variational Bayesian Gaussian Mixture

    最重要的一点是:Bayesian GMM为什么拟合的更好? PRML 这段文字做了解释: Ref: http://freemind.pluskid.org/machine-learning/decid ...

  4. [zz] 混合高斯模型 Gaussian Mixture Model

    聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...

  5. Andrew Ng机器学习公开课笔记 -- Mixtures of Gaussians and the EM algorithm

    网易公开课,第12,13课 notes,7a, 7b,8 从这章开始,介绍无监督的算法 对于无监督,当然首先想到k means, 最典型也最简单,有需要直接看7a的讲义   Mixtures of G ...

  6. Fisher Vector Encoding and Gaussian Mixture Model

    一.背景知识 1. Discriminant  Learning Algorithms(判别式方法) and Generative Learning Algorithms(生成式方法) 现在常见的模式 ...

  7. 聚类之高斯混合模型(Gaussian Mixture Model)【转】

    k-means应该是原来级别的聚类方法了,这整理下一个使用后验概率准确评测其精度的方法—高斯混合模型. 我们谈到了用 k-means 进行聚类的方法,这次我们来说一下另一个很流行的算法:Gaussia ...

  8. 漫谈 Clustering (3): Gaussian Mixture Model

    上一次我们谈到了用 k-means 进行聚类的方法,这次我们来说一下另一个很流行的算法:Gaussian Mixture Model (GMM).事实上,GMM 和 k-means 很像,不过 GMM ...

  9. 高斯混合模型Gaussian Mixture Model (GMM)——通过增加 Model 的个数,我们可以任意地逼近任何连续的概率密分布

    从几何上讲,单高斯分布模型在二维空间应该近似于椭圆,在三维空间上近似于椭球.遗憾的是在很多分类问题中,属于同一类别的样本点并不满足“椭圆”分布的特性.这就引入了高斯混合模型.——可以认为是基本假设! ...

随机推荐

  1. Node.js中的异步I/O是如何进行的?

    Node.js的异步I/O通过事件循环的方式实现.其中异步I/O又分磁盘I/O和网络I/O.在磁盘I/O的调用中,当发起异步调用后,会将异步操作送进libuv提供的队列中,然后返回.当磁盘I/O执行完 ...

  2. Mybatis概述

    mybatis概述 1 mybatis产生的意义 传统的jdbc, 及其存在的问题 package cn.rodge.jdbc;import java.sql.Connection;import ja ...

  3. HTTP和SOAP完全就是两个不同的协议

    HTTP只负责把数据传送过去,不会管这个数据是XML.HTML.图片.文本文件或者别的什么.而SOAP协议则定义了怎么把一个对象变成XML文本,在远程如何调用等,怎么能够混为一谈.           ...

  4. java中使用hashSet的特性,判断数组是否有重复值

    public static boolean cheakRepeat(int[] array){ HashSet<Integer> hashSet = new HashSet<Inte ...

  5. MyEclipse代码提示设置

    (一)普通代码提示 1. 打开MyEclipse ,然后"window"→"Preferences" 2. 选择"java",展开,&quo ...

  6. 使用Spring MVC测试Spring Security Oauth2 API

    不是因为看到希望了才去坚持,而坚持了才知道没有希望. 前言 在Spring Security源码分析十一:Spring Security OAuth2整合JWT和Spring Boot 2.0 整合 ...

  7. Guns(开源后台管理系统框架)实战(一)——开发环境搭建

    1. 开发环境搭建 1.1. 开发环境要求 1.2. 配置Maven 1.3. 配置MySQL 1.4. Git克隆项目 1.5. Eclipse导入系统 2. 小结 3. 参考引用 1. 开发环境搭 ...

  8. java Socket多线程聊天程序

    参考JAVA 通过 Socket 实现 TCP 编程 参考java Socket多线程聊天程序(适合初学者) 以J2SDK-1.3为例,Socket和ServerSocket类库位于java.net包 ...

  9. BZOJ_3129_[Sdoi2013]方程_组合数学+容斥原理

    BZOJ_3129_[Sdoi2013]方程_组合数学+容斥原理 Description 给定方程     X1+X2+. +Xn=M 我们对第l..N1个变量进行一些限制: Xl < = A ...

  10. 显著性检测(saliency detection)评价指标之KL散度距离Matlab代码实现

    步骤1:先定义KLdiv函数: function score = KLdiv(saliencyMap, fixationMap) % saliencyMap is the saliency map % ...