机器学习实战基础(二十四):sklearn中的降维算法PCA和SVD(五) PCA与SVD 之 重要接口inverse_transform
重要接口inverse_transform
在上周的特征工程课中,我们学到了神奇的接口inverse_transform,可以将我们归一化,标准化,甚至做过哑变量的特征矩阵还原回原始数据中的特征矩阵,这几乎在向我们暗示,任何有inverse_transform这个接口的过程都是可逆的。PCA应该也是如此。在sklearn中,我们通过让原特征矩阵X右乘新特征空间矩阵V(k,n)来生成新特征矩阵X_dr,那理论上来说,让新特征矩阵X_dr右乘V(k,n)的逆矩阵
,就可以将新特征矩阵X_dr还原为X。那sklearn是否这样做了呢?让我们来看看下面的案例。
1 迷你案例:用人脸识别看PCA降维后的信息保存量
人脸识别是最容易的,用来探索inverse_transform功能的数据。我们先调用一组人脸数据X(m,n),对人脸图像进行绘制,然后我们对人脸数据进行降维得到X_dr,之后再使用inverse_transform(X_dr)返回一个X_inverse(m,n),并对这个新矩阵中的人脸图像也进行绘制。
如果PCA的降维过程是可逆的,我们应当期待X(m,n)和X_inverse(m,n)返回一模一样的图像,即携带一模一样的信息。
1. 导入需要的库和模块
from sklearn.datasets import fetch_lfw_people
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import numpy as np
2. 导入数据,探索数据
faces = fetch_lfw_people(min_faces_per_person=60)
faces.images.shape
#怎样理解这个数据的维度?
faces.data.shape
#换成特征矩阵之后,这个矩阵是什么样?
X = faces.data
3. 建模降维,获取降维后的特征矩阵X_dr
pca = PCA(150)
X_dr = pca.fit_transform(X)
X_dr.shape
4. 将降维后矩阵用inverse_transform返回原空间
X_inverse = pca.inverse_transform(X_dr) X_inverse.shape
5. 将特征矩阵X和X_inverse可视化
fig, ax = plt.subplots(2,10,figsize=(10,2.5)
,subplot_kw={"xticks":[],"yticks":[]}
) #和2.3.3节中的案例一样,我们需要对子图对象进行遍历的循环,来将图像填入子图中
#那在这里,我们使用怎样的循环?
#现在我们的ax中是2行10列,第一行是原数据,第二行是inverse_transform后返回的数据
#所以我们需要同时循环两份数据,即一次循环画一列上的两张图,而不是把ax拉平 for i in range(10):
ax[0,i].imshow(face.image[i,:,:],cmap="binary_r")
ax[1,i].imshow(X_inverse[i].reshape(62,47),cmap="binary_r")
可以明显看出,这两组数据可视化后,由降维后再通过inverse_transform转换回原维度的数据画出的图像和原数据画的图像大致相似,但原数据的图像明显更加清晰。
这说明,inverse_transform并没有实现数据的完全逆转。这是因为,在降维的时候,部分信息已经被舍弃了,X_dr中往往不会包含原数据100%的信息,所以在逆转的时
候,即便维度升高,原数据中已经被舍弃的信息也不可能再回来了。所以,降维不是完全可逆的。
Inverse_transform的功能,是基于X_dr中的数据进行升维,将数据重新映射到原数据所在的特征空间中,而并非恢复所有原有的数据。
但同时,我们也可以看出,降维到300以后的数据,的确保留了原数据的大部分信息,所以图像看起来,才会和原数据高度相似,只是稍稍模糊罢了。
2 迷你案例:用PCA做噪音过滤
降维的目的之一就是希望抛弃掉对模型带来负面影响的特征,而我们相信,带有效信息的特征的方差应该是远大于噪音的,所以相比噪音,有效的特征所带的信息应该不会在PCA过程中被大量抛弃。
inverse_transform能够在不恢复原始数据的情况下,将降维后的数据返回到原本的高维空间,即是说能够实现”保证维度,但去掉方差很小特征所带的信息“。利用inverse_transform的这个性质,我们能够实现噪音过滤。
1. 导入所需要的库和模块
from sklearn.datasets import load_digits
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import numpy as np
2. 导入数据,探索数据
digits = load_digits()
digits.data.shape
3. 定义画图函数
def plot_digits(data):
fig, axes = plt.subplots(4,10,figsize=(10,4)
,subplot_kw = {"xticks":[],"yticks":[]}
)
for i, ax in enumerate(axes.flat):
ax.imshow(data[i].reshape(8,8),cmap="binary")
plot_digits(digits.data)
4. 为数据加上噪音
np.random.RandomState(42) #在指定的数据集中,随机抽取服从正态分布的数据
#两个参数,分别是指定的数据集,和抽取出来的正太分布的方差
noisy = np.random.normal(digits.data,2) plot_digits(noisy)
5. 降维
pca = PCA(0.5).fit(noisy)
X_dr = pca.transform(noisy)
X_dr.shape
6. 逆转降维结果,实现降噪
without_noise = pca.inverse_transform(X_dr)
plot_digits(without_noise)
机器学习实战基础(二十四):sklearn中的降维算法PCA和SVD(五) PCA与SVD 之 重要接口inverse_transform的更多相关文章
- 机器学习实战基础(十四):sklearn中的数据预处理和特征工程(七)特征选择 之 Filter过滤法(一) 方差过滤
Filter过滤法 过滤方法通常用作预处理步骤,特征选择完全独立于任何机器学习算法.它是根据各种统计检验中的分数以及相关性的各项指标来选择特征 1 方差过滤 1.1 VarianceThreshold ...
- 机器学习实战基础(二十二):sklearn中的降维算法PCA和SVD(三) PCA与SVD 之 重要参数n_components
重要参数n_components n_components是我们降维后需要的维度,即降维后需要保留的特征数量,降维流程中第二步里需要确认的k值,一般输入[0, min(X.shape)]范围中的整数. ...
- 机器学习实战基础(二十):sklearn中的降维算法PCA和SVD(一) 之 概述
概述 1 从什么叫“维度”说开来 我们不断提到一些语言,比如说:随机森林是通过随机抽取特征来建树,以避免高维计算:再比如说,sklearn中导入特征矩阵,必须是至少二维:上周我们讲解特征工程,还特地提 ...
- Bootstrap<基础二十四> 缩略图
Bootstrap 缩略图.大多数站点都需要在网格中布局图像.视频.文本等.Bootstrap 通过缩略图为此提供了一种简便的方式.使用 Bootstrap 创建缩略图的步骤如下: 在图像周围添加带有 ...
- 机器学习实战基础(二十三):sklearn中的降维算法PCA和SVD(四) PCA与SVD 之 PCA中的SVD
PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,P ...
- 机器学习实战基础(二十五):sklearn中的降维算法PCA和SVD(六) 重要接口,参数和属性总结
到现在,我们已经完成了对PCA的讲解.我们讲解了重要参数参数n_components,svd_solver,random_state,讲解了三个重要属性:components_, explained_ ...
- 机器学习实战基础(十):sklearn中的数据预处理和特征工程(三) 数据预处理 Preprocessing & Impute 之 缺失值
缺失值 机器学习和数据挖掘中所使用的数据,永远不可能是完美的.很多特征,对于分析和建模来说意义非凡,但对于实际收集数据的人却不是如此,因此数据挖掘之中,常常会有重要的字段缺失值很多,但又不能舍弃字段的 ...
- 机器学习实战基础(二十一):sklearn中的降维算法PCA和SVD(二) PCA与SVD 之 降维究竟是怎样实现
简述 在降维过程中,我们会减少特征的数量,这意味着删除数据,数据量变少则表示模型可以获取的信息会变少,模型的表现可能会因此受影响.同时,在高维数据中,必然有一些特征是不带有有效的信息的(比如噪音),或 ...
- 机器学习实战基础(十九):sklearn中数据集
sklearn提供的自带的数据集 sklearn 的数据集有好多个种 自带的小数据集(packaged dataset):sklearn.datasets.load_<name> 可在 ...
随机推荐
- HashMap源码和并发异常问题分析
要点源码分析 HashMap允许键值对为null:HashTable则不允许,会报空指针异常: HashMap<String, String> map= new HashMap<&g ...
- Kubernetes-subpath的使用
一.什么是subpath 为了支持单一个pod多次使用同一个volume而设计,subpath翻译过来是子路径的意思,如果是数据卷挂载在容器,指的是存储卷目录的子路径,如果是配置项configMap/ ...
- Quartz.Net系列(三):解读Quartz.Net源码领略设计模式在其中的应用
1.Builder(建造者)模式 JobBuilder DateBuilder 其他的Builder(TriggerBuilder.SchedulerBuilder等) 2.抽象工厂模式 ISch ...
- 华为海思搞定4K60fps!Vmate掌上云台相机国内首发
目录 Snoppa Vmate Snoppa Vmate Snoppa Vmate是一款掌上型的高性能4K摄像机,集成了微型机械三轴增稳云台,一体化机身集成可操控式触摸屏,既可以独立使用,也可以无线连 ...
- VS2017未安装MFC解决方法
VS2017未安装MFC解决方法 https://blog.csdn.net/u010921682/article/details/89847395
- 用python玩推理游戏还能掌握基础知识点,有趣又充实,你不试试吗?
可能更多的人依然还在苦苦的学python各种知识点,但其实同样很多人,玩着游戏就把python学会了. 用python玩推理游戏,是这份python教程中的12个游戏的其中之一. 有关这份Py ...
- SpringBoot读取application.properties中文乱码
[本文版权归微信公众号"代码艺术"(ID:onblog)所有,若是转载请务必保留本段原创声明,违者必究.若是文章有不足之处,欢迎关注微信公众号私信与我进行交流!] 解决方案 在ID ...
- 深入浅出PyTorch(算子篇)
Tensor 自从张量(Tensor)计算这个概念出现后,神经网络的算法就可以看作是一系列的张量计算.所谓的张量,它原本是个数学概念,表示各种向量或者数值之间的关系.PyTorch的张量(torch. ...
- 第三章:软件也要拼脸蛋-UI 开发的点点滴滴
常用控件 常用控件有:按钮 Button.文本显示框 TextView.图片显示框 ImageView.文本编辑框 EditText.进度条 ProgressBar.提示框 AlertDialog.进 ...
- 为什么 char c = 'A';c += 32; 结果输出的是 'a'?
首先 char 类型的数据只要参与运行会先转换为 int 类型数值(在 ASCII 编码表中 'A' 对应十进制的 65),那么 'A' 转换为 int 为 65,65 + 32 = 97,+= 包含 ...