【BZOJ4596】黑暗前的幻想乡(矩阵树定理,容斥)

题面

BZOJ

有\(n\)个点,要求连出一棵生成树,

指定了一些边可以染成某种颜色,一共\(n-1\)种颜色,

求所有颜色都出现过的生成树方案数。

题解

一脸的容斥啊。

先矩阵树定理暴力算出所有符合条件的生成树,然后减去\(n-2\)中颜色的方案数,

再加上\(n-3\)种颜色的方案数......

所以直接暴力枚举颜色的子集,每次矩阵树就好了。

时间复杂度大概是\(O(2^{n-1}n^3log)\)???

虽然\(log\)小的不行,甚至可以当做没有啊。

但是,。。这复杂度假的不行啊。、

假装复杂度非常正确

#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
#define RG register
#define MAX 20
#define MOD 1000000007
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,a[MAX][MAX],m[MAX],cnt[1<<17],ans;
int u[MAX][MAX*MAX],v[MAX][MAX*MAX];
int Calc(int S)
{
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)a[i][j]=0;
for(int i=1;i<n;++i)
if(S&(1<<(i-1)))
for(int j=1;j<=m[i];++j)
{
int x=u[i][j],y=v[i][j];
++a[x][x];++a[y][y];--a[x][y];--a[y][x];
}
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)add(a[i][j],MOD);
int ret=1;
for(int i=2;i<=n;++i)
{
for(int j=i+1;j<=n;++j)
while(a[j][i])
{
int t=a[i][i]/a[j][i];
for(int k=i;k<=n;++k)
a[i][k]=(a[i][k]-1ll*a[j][k]*t%MOD+MOD)%MOD,swap(a[i][k],a[j][k]);
ret=MOD-ret;
}
ret=1ll*ret*a[i][i]%MOD;
}
return ret;
}
int main()
{
n=read();
for(int i=1;i<n;++i)
{
m[i]=read();
for(int j=1;j<=m[i];++j)u[i][j]=read(),v[i][j]=read();
}
for(int i=0;i<1<<(n-1);++i)cnt[i]=cnt[i>>1]+(i&1);
for(int i=0;i<1<<(n-1);++i)add(ans,((n-1-cnt[i])&1)?MOD-Calc(i):Calc(i));
printf("%d\n",ans);
}

【BZOJ4596】黑暗前的幻想乡(矩阵树定理,容斥)的更多相关文章

  1. bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 559  Solved: 325[Submit][Sta ...

  2. [SHOI2016] 黑暗前的幻想乡 - 矩阵树定理,容斥

    #include <bits/stdc++.h> using namespace std; #define int long long const int N = 20; const in ...

  3. bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥)

    bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥) bzoj Luogu 题解时间 看一看数据范围,求生成树个数毫无疑问直接上矩阵树定理. 但是要求每条边都 ...

  4. 【BZOJ4596】【Luogu P4336】 [SHOI2016]黑暗前的幻想乡 矩阵树定理,容斥

    同样是矩阵树定理的裸题.但是要解决它需要能够想到容斥才可以. \(20\)以内的数据范围一定要试试容斥的想法. #include <bits/stdc++.h> using namespa ...

  5. Luogu P4336 [SHOI2016]黑暗前的幻想乡 矩阵树定理+容斥原理

    真是菜到爆炸....容斥写反(反正第一次写qwq) 题意:$n-1$个公司,每个公司可以连一些边,求每个边让不同公司连的生成树方案数. 矩阵树定理+容斥原理(注意到$n$不是很大) 枚举公司参与与否的 ...

  6. 【bzoj4596】[Shoi2016]黑暗前的幻想乡 (矩阵树定理+容斥)

    Description 四年一度的幻想乡大选开始了,最近幻想乡最大的问题是很多来历不明的妖怪涌入了幻想乡,扰乱了幻想乡昔日的秩序.但是幻想乡的建制派妖怪(人类)博丽灵梦和八云紫等人整日高谈所有妖怪平等 ...

  7. P4336 [SHOI2016]黑暗前的幻想乡

    P4336 [SHOI2016]黑暗前的幻想乡 矩阵树定理(高斯消元+乘法逆元)+容斥 ans=总方案数 -(公司1未参加方案数 ∪ 公司2未参加方案数 ∪ 公司3未参加方案数 ∪ ...... ∪ ...

  8. 洛谷 P4336 黑暗前的幻想乡 —— 容斥+矩阵树定理

    题目:https://www.luogu.org/problemnew/show/P4336 当作考试题了,然而没想出来,呵呵. 其实不是二分图完美匹配方案数,而是矩阵树定理+容斥... 就是先放上所 ...

  9. 【BZOJ4596】[Shoi2016]黑暗前的幻想乡 容斥+矩阵树定理

    [BZOJ4596][Shoi2016]黑暗前的幻想乡 Description 幽香上台以后,第一项措施就是要修建幻想乡的公路.幻想乡有 N 个城市,之间原来没有任何路.幽香向选民承诺要减税,所以她打 ...

随机推荐

  1. Maven学习(八)-----Maven依赖机制

    Maven依赖机制 在 Maven 依赖机制的帮助下自动下载所有必需的依赖库,并保持版本升级. 案例分析 让我们看一个案例研究,以了解它是如何工作的.假设你想使用 Log4j 作为项目的日志.这里你要 ...

  2. Selenium2+python自动化-环境搭建

    一.selenium简介 Selenium 是用于测试 Web 应用程序用户界面 (UI) 的常用框架.它是一款用于运行端到端功能测试的超强工具.您可以使用多个编程语言编写测试,并且 Selenium ...

  3. TW实习日记:第五天

    今天可以说是非常忙的一天了,要再项目中实现微信相关的功能:授权登录以及扫码登录,还有就是自建应用的发送消息.首先功能代码其实在经过了几天的学习之后并没有很难,但是最让我难受的是在项目中去加代码,首先s ...

  4. Maven私库

    <server> <id>releases</id> <username>admin</username> <password> ...

  5. openstack-r版(rocky)搭建基于centos7.4 的openstack swift对象存储服务 一

    openstack-r版(rocky)搭建基于centos7.4 的openstack swift对象存储服务 一 openstack-r版(rocky)搭建基于centos7.4 的openstac ...

  6. leetcode个人题解——#33 Search in Rotated Sorted Array

    思路:每次取中间元素,一定有一半有序,另一半部分有序,有序的部分进行二分查找,部分有序的部分递归继续处理. class Solution { public: ; int middleSearch(in ...

  7. Fedora 28 UEFI模式安装过程记录

    这次的折腾是个意外.不过还是要记录一下. 多次做启动盘,把U盘做坏了.将U盘用量产工具修复以后就能做启动盘了.从官网下了Fedora 28的镜像(与CentOS同属RedHat系,尽量与鸟哥一致),用 ...

  8. 数据时代的的企业管理 记SAP商业同略会

    [PConline 资讯]在2012 SAP中国商业同略会城市论坛深圳站上,自SAP中国的萧洁云总裁和张志琦先生,对SAP中国的战略.SAP的技术战略,以及SAP对于行业趋势分析与媒体进行了沟通,对数 ...

  9. 梯度下降算法以及其Python实现

    一.梯度下降算法理论知识 我们给出一组房子面积,卧室数目以及对应房价数据,如何从数据中找到房价y与面积x1和卧室数目x2的关系?   为了实现监督学习,我们选择采用自变量x1.x2的线性函数来评估因变 ...

  10. nginx upstream 名称下划线问题

    原始配置: user  nobody;worker_processes  1; #pid        logs/nginx.pid; worker_connections  1024;} http ...