[CodeForces - 1225D]Power Products 【数论】 【分解质因数】
[CodeForces - 1225D]Power Products 【数论】 【分解质因数】
标签:题解 codeforces题解 数论
题目描述
Time limit
2000 ms
Memory limit
524288 kB
Source
Technocup 2020 - Elimination Round 2
Tags
hashing math number theory *1900
Site
https://codeforces.com/problemset/problem/1225/D
题面

Example
Input
6 3
1 3 9 8 24 1
Output
5
题目大意
给定\(n, k\),序列\(a[1 \cdots n]\)。问在该序列中能找到多少组序偶\(<i, j>\)满足\(a_i \cdot a_j = x ^ k\)(其中\(x\)可以为任意整数)。
例如,
\(n = 6, k = 3, a[1 \cdots n] = [1, 3, 9, 8, 24, 1]\)。
则有$$a_1 \cdot a_4 = 1 \cdot 8 = 8 = 2 ^ 3 \ a_1 \cdot a_6 = 1 \cdot 1 = 1 = 1 ^ 3 \ a_2 \cdot a_3 = 3 \cdot 9 = 27 = 3 ^ 3 \ a_3 \cdot a_5 = 9 \cdot 24 = 216 = 6 ^ 3 \ a_4 \cdot a_6 = 8 \cdot 1 = 8 = 2 ^ 3 $$
共五组情况,所以输出5。
解析
这道题是一道比较裸的数论题,很容易让人直接想到质因数分解。虽然我没有想到,当时打比赛都没有做到D题。
这题首先不考虑数论的知识,把这种求序偶个数的问题抽象出来。
把这道题抽象为给定\(n, k\),序列\(a[1 \cdots n]\)。问在该序列中能找到多少组序偶\(<i, j>\)满足\(a_i + a_j = k\)。
这个问题其实很好解决,只要稍微想一下就可以得出答案。令\(cnt[i][j]\)为到第\(i\)个位置,数字\(j\)在之前出现的次数。那么答案应该是\(\sum_i^ncnt[i][k - a[i]]\)。
在实际编程过程中,因为我们每到一个数\(a[i]\), \(cnt[i][a[i]]\)实际上是在上一个\(cnt[i - 1][a[i]]\)基础上得来的,而这个\(cnt[i - 1][a[i]]\)之后就再也没有用了,其他的\(cnt[i - 1][1 \cdots INF]\)也没有改变,所以我们可以将这个\(cnt\)数组降到一维,这个思想也叫作滚动数组。下面回到这个问题,把关键的\(a_i \cdot a_j = x ^ k\)加入其中。
首先我们要知道当给定了\(k\),即使\(x\)的值是不确定的,对于\(t \cdot s = x ^ k\),对于每一个\(t\)都只有唯一的\(s\)与之对应。
对\(t\)质因数分解,得
\]
则$$s = p_1^{k - (\alpha_1 % k)} \cdot p_2^{k - (\alpha_2 % k)} \cdot p_3^{k - (\alpha_3 % k)} \cdot \dots$$
所以对于每个\(t\)我们只要看之前有多少个这样的\(s\)出现就可以了。
而对于每个\(a_i(t)\)我们实际上要记录的是它的\(t_0\)形式,因为只有这种形式才对答案有贡献。
- 这样我们在对每个\(a_i\)进行质因数分解的时候就顺带把\(s\)的值也求出来,最后\(\sum_i^ncnt[x ^ k \div a[i]]\)即为答案(\(cnt\)为滚动数组,即到当前\(i\)位置,之前的数字\(x ^ k \div a[i]\)出现的个数)。
通过代码
/*
Status
Accepted
Time
46ms
Memory
396kB
Length
1076
Lang
GNU G++11 5.1.0
Submitted
2019-12-20 16:42:32
RemoteRunId
67272043
*/
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 1e5 + 50;
int cnt[MAXN];
int x, n, k;
ll y; //注意y要开long long.
inline int read() //快读,1e5数据输入量.
{
int res = 0;
char ch;
ch = getchar();
while(!isdigit(ch))
ch = getchar();
while(isdigit(ch)){
res = (res << 3) + (res << 1) + ch - 48;
ch = getchar();
}
return res;
}
void work(int p, int &t)
{
int c = 0;
while(t % p == 0)
t /= p, c ++;
c %= k;
for(int i = 0; i < c; i ++)
x *= p;
for(int i = 0; i < (k - c) % k; i ++){ //(k - c) % k是针对c为0的情况的特判.
y *= p;
if(y >= MAXN){
y = MAXN;
break;
}
}
return;
}
int main()
{
ll ans = 0;
n = read(), k = read();
for(int i = 1; i <= n; i ++){
int t;
t = read();
x = y = 1; //x对应的是t0,y对应的是s.
for(int j = 2; j * j <= t; j ++) //质因数分解.
if(t % j == 0) work(j, t);
if(t > 1) work(t, t);
if(y < MAXN){ //如果得到的y超过1e5,就超过范围找不到了,就没有意义.
ans += cnt[y];
cnt[x] ++;
}
}
printf("%I64d", ans);
return 0;
}
[CodeForces - 1225D]Power Products 【数论】 【分解质因数】的更多相关文章
- [Codeforces 1246B] Power Products (STL+分解质因数)
[Codeforces 1246B] Power Products (STL+分解质因数) 题面 给出一个长度为\(n\)的序列\(a_i\)和常数k,求有多少个数对\((i,j)\)满足\(a_i ...
- Codeforces 1247D. Power Products
传送门 要满足存在 $x$ ,使得 $a_i \cdot a_j = x^k$ 那么充分必要条件就是 $a_i \cdot a_j$ 质因数分解后每个质因数的次幂都要为 $k$ 的倍数 证明显然 设 ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) D. Power Products 数学 暴力
D. Power Products You are given n positive integers a1,-,an, and an integer k≥2. Count the number of ...
- 数学概念——J - 数论,质因数分解
J - 数论,质因数分解 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit ...
- Codeforces 893E Counting Arrays:dp + 线性筛 + 分解质因数 + 组合数结论
题目链接:http://codeforces.com/problemset/problem/893/E 题意: 共q组数据(q <= 10^5),每组数据给定x,y(x,y <= 10^6 ...
- Aladdin and the Flying Carpet (LightOJ - 1341)【简单数论】【算术基本定理】【分解质因数】
Aladdin and the Flying Carpet (LightOJ - 1341)[简单数论][算术基本定理][分解质因数](未完成) 标签:入门讲座题解 数论 题目描述 It's said ...
- 【分解质因数】【树状数组】【快速幂】codeforces 2014 ACM-ICPC Vietnam National Second Round E. ACM
乘除都在150以内,分解质因数后发现只有35个,建立35个树状数组/线段树,做区间加.区间查询,最后快速幂起来. #include<cstdio> #include<cstring& ...
- Luogu P1069细胞分裂【分解质因数/数论】By cellur925
题目传送门 发现这题真的坑超多啊...调了一晚上终于过了...我好菜啊qwq. 题意说的比较明白,让你求满足(si^k)%(m1^m2)==0的最小k值.然后看数据范围我们知道,我们肯定不能暴力的判断 ...
- Codeforces 1097D (DP+分解质因数)
题目 传送门 分析 考虑\(n=p^q\)且p为质数的情况 设dp[i][j]表示经过i次变化后数为\(p^j\)的概率 则初始值dp[0][q]=1 状态转移方程为\(dp[i][j]=\sum{} ...
随机推荐
- Golang 怎么给WaitGroup加超时时间
怎么给WaitGroup加超时时间呢?刚好群里有人问了我这个问题,我就把我的方法在这边贴出来了. var w = sync.WaitGroup{} var ch = make(chan bool) w ...
- springboot使用api操作HBase之shell
HBase的基本读写流程写入流程读取流程HBase的模块与协作HBase启动RegionServer失效HMaster失效HBase常用的Shell命令进入shellhelp命令查询服务器状态查看所有 ...
- SpringSpringBoot上传文件到七牛云
准备工作 maven pom.xml添加七牛云的sdk依赖 <dependency> <groupId>com.qiniu</groupId> <artifa ...
- NodeJS2-4环境&调试----global变量
global全局对象,希望把全局访问到的对象,属性和方法等挂到global对象上,除了用户自定义的方法外,global本身默认带着一些常用的属性和方法的 CommonJS Buffer.process ...
- Python 进阶之源码分析:如何将一个类方法变为多个方法?
前一篇文章<Python 中如何实现参数化测试?>中,我提到了在 Python 中实现参数化测试的几个库,并留下一个问题: 它们是如何做到把一个方法变成多个方法,并且将每个方法与相应的参数 ...
- VS2019 开发Django(八)------视图
导航:VS2019开发Django系列 这几天学习了一下Django的视图和模板,从这几天的学习进度来看,视图这里并没有花很多的时间,相反的,模板花费了大量的时间,主要原因还是因为对Jquery操作d ...
- laravel起步的一些小问题
工作中主要使用的是.NET,PHP只是我业余喜欢的一门语言,而之前一直用的是yii2框架,觉得Yii2是最好的框架了,然而,laravel在业界的名声太大,被誉为:最优雅的框架,所以,我决定花点时间研 ...
- ArcGIS Runtime SDK for WPF学习笔记(一)
本节主要讲解如何安装ArcGIS Runtime SDK,以及移除注释与水印. 附上ArcGIS Runtime SDK for .NET的官方操作手册网址:https://developers.ar ...
- 利用百度AI快速开发出一款“问答机器人”并接入小程序
先看实现效果: 利用百度UNIT预置的智能问答技能和微信小程序,实现语音问答机器人.这里主要介绍小程序功能开发实现过程,分享主要功能实现的子程序模块,都是干货! 想了解UNIT预置技能调用,请参看我之 ...
- CentOS7下部署java+tomcat+mysql项目及遇到的坑
CentOS 7 下安装部署java+tomcat+mysql 前置:CentOS7安装:https://jingyan.baidu.com/article/b7001fe1d1d8380e7382d ...