【BZOJ3171】[TJOI2013] 循环格(网络流)
大致题意: 给你一个循环格,每个格子有一个方向。问你至少修改多少格子,才能使从每个格子出发都能回到原格子。
建图
这是道网络流题目,主要就是考虑如何建图。
我们可以把每个点拆成两个点,一个入点,一个出点。
连边有以下两种:
- 超级源向每个点出点、每个点入点向超级汇连一条容量为\(1\),代价为\(0\)的边。
- 每个点出点向这个点在矩阵中相邻的点的入点连一条容量为\(1\)的边,若方向与格子原先方向相同,代价为\(0\),不同时代价为\(1\)。
然后跑最小费用最大流就可以了。
代码
#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 15
#define INF 1e9
using namespace std;
int n,m;char a[N+5][N+5];
template<int PS,int ES> class Dinic//最小费用最大流
{
private:
#define Else(x) ((((x)-1)^1)+1)
#define add(x,y,f,c) (e[++ee].nxt=lnk[x],e[lnk[x]=ee].to=y,e[ee].F=f,e[ee].C=c)
int ee,lnk[PS+5],lst[PS+5],Iq[PS+5],F[PS+5],C[PS+5];queue<int> q;
struct edge {int to,nxt,F,C;}e[2*ES+5];
I bool SPFA()//SPFA找增广路
{
RI i,k;for(i=1;i<=2*n*m+2;++i) F[i]=C[i]=INF;C[S]=0,q.push(S),Iq[S]=1;
W(!q.empty())
{
for(Iq[k=q.front()]=0,q.pop(),i=lnk[k];i;i=e[i].nxt) e[i].F&&C[k]+e[i].C<C[e[i].to]&&
(
C[e[i].to]=C[k]+e[lst[e[i].to]=i].C,F[e[i].to]=min(F[k],e[i].F),
!Iq[e[i].to]&&(q.push(e[i].to),Iq[e[i].to]=1)
);
}return F[T]!=INF;
}
public:
int S,T;I Dinic() {S=1,T=2;}
I int PI(CI x,CI y) {return (x-1)*m+y+2;}I int PO(CI x,CI y) {return (x+n-1)*m+y+2;}
I void Add(CI x,CI y,CI f,CI c) {add(x,y,f,c),add(y,x,0,-c);}//连边
I void Solve()
{
RI x,t=0;W(SPFA())
{
x=T,t+=F[T]*C[T];//统计最小费用
W(x^S) e[lst[x]].F-=F[T],e[Else(lst[x])].F+=F[T],x=e[Else(lst[x])].to;//修改源到汇路径上的残量
}printf("%d",t);//输出最小费用
}
};Dinic<2*N*N+2,6*N*N> D;
int main()
{
RI i,j;for(scanf("%d%d",&n,&m),i=1;i<=n;++i) scanf("%s",a[i]+1);
for(i=1;i<=n;++i) for(j=1;j<=m;++j)
#define lst(x,t) ((x)^1?(x)-1:(t))
#define nxt(x,t) ((x)^(t)?(x)+1:1)
D.Add(D.S,D.PO(i,j),1,0),D.Add(D.PI(i,j),D.T,1,0),//与超级源、超级汇连边
D.Add(D.PO(i,j),D.PI(lst(i,n),j),1,a[i][j]!='U'),//与相邻点连边
D.Add(D.PO(i,j),D.PI(nxt(i,n),j),1,a[i][j]!='D'),//与相邻点连边
D.Add(D.PO(i,j),D.PI(i,lst(j,m)),1,a[i][j]!='L'),//与相邻点连边
D.Add(D.PO(i,j),D.PI(i,nxt(j,m)),1,a[i][j]!='R');//与相邻点连边
return D.Solve(),0;
}
【BZOJ3171】[TJOI2013] 循环格(网络流)的更多相关文章
- BZOJ3171 Tjoi2013 循环格
传送门 Description 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位置(r,c) ,你可以沿着箭头 ...
- bzoj3171: [Tjoi2013]循环格(费用流)
传送门 其实这题的建图并不难(虽然我并没有想出来) 首先,每一个点的入度和出度必须为$1$ 那么我们考虑拆点 每个点的出度点向它能到达的点的入度点连边,容量$1$,如果方向为原来的方向则费用$0$否则 ...
- Bzoj 3171: [Tjoi2013]循环格 费用流
3171: [Tjoi2013]循环格 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 741 Solved: 463[Submit][Status][ ...
- [Tjoi2013]循环格
[Tjoi2013]循环格 2014年3月18日1,7500 Description Input 第一行两个整数R,C.表示行和列,接下来R行,每行C个字符LRUD,表示左右上下. Output 一个 ...
- 洛谷 P3965 [TJOI2013]循环格 解题报告
P3965 [TJOI2013]循环格 题目背景 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子. 每个元素有一个坐标(行,列),其中左上角元素坐标为\((0,0)\).给定一个起始位\ ...
- BZOJ_3171_[Tjoi2013]循环格_最小费用最大流
BZOJ_3171_[Tjoi2013]循环格_最小费用最大流 Description 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为 ...
- [TJOI2013]循环格 费用流 BZOJ3171
题目背景 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位(r,c),你可以沿着箭头方向在格子间行走.即:如果 ...
- 【bzoj3171】[Tjoi2013]循环格
题目描述: 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位置(r,c) ,你可以沿着箭头防线在格子间行走.即 ...
- 【BZOJ 3171】 [Tjoi2013]循环格
Description 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位置(r,c) ,你可以沿着箭头防线在格 ...
随机推荐
- Python网络编程基础 struct模块 解决黏包问题 FTP
struct模块 解决黏包问题 FTP
- super()方法详解
目录 一.单独调用父类的方法 二.super() 方法基本概念 2.1 描述 2.2 语法 2.3 单继承使用super() 2.4 多继承使用super() 三.注意事项 四.练习 一.单独调用父类 ...
- 创建workbook及相关操作
通过openpyxl模块创建workbook时,无需本地事先创建好excel,它会直接创建一个新的excel文件 创建workbook时,会至少包含一个worksheet 注意:openpyxl模块只 ...
- 【Oracle】Oracle常用命令整理(持续更新中)
一些常用的操作命令记录 SQLPlus连接 sqlplus {username}/{password}@{ip}:{port}/{sid} 创建用户 create user testuser iden ...
- IT兄弟连 Java语法教程 位运算符
Java定义了几个位运算符,它们都可以用于整数类型(long.int.short.byte以及char).这些运算符对操作数的单个位进行操作.表1 对位运算符进行了总结. 表1 位运算符 由于位运算 ...
- 洛谷 P4124 (数位 DP)
### 洛谷 P4124 题目链接 ### 题目大意: 给你一段区间,让你求满足下列两个条件时的数的个数. 1.至少有 3 个相邻相同数字 (即 111 .1111 .222 等) 2.不能同时出现 ...
- Jenkins 有关 Maven 的内容
Jenkins Maven 插件安装 在安装完 Jenkins 后,我们想添加新的项目 为 Maven 项目时,发现找不到这个选项. 原因是我们没有安装插件 Maven Integration. 在 ...
- C# shell32.dll 的用法
1 首先要使用shell32 请在项目引用中添加shell32.dll 的引用 (备注:该引用是系统dll文件 在C:\Windows\System32 目录下 可以自行拷贝到项目中) priv ...
- php实现基础排序算法
<?php header("content-type:text/html;charset=utf-8"); $testArr = array(); $time1 = micr ...
- Java生鲜电商平台-秒杀系统微服务架构设计与源码解析实战
Java生鲜电商平台-秒杀系统微服务架构设计与源码解析实战 Java生鲜电商平台- 什么是秒杀 通俗一点讲就是网络商家为促销等目的组织的网上限时抢购活动 比如说京东秒杀,就是一种定时定量秒杀,在规定 ...