点此看题面

大致题意: 给你一个循环格,每个格子有一个方向。问你至少修改多少格子,才能使从每个格子出发都能回到原格子。

建图

这是道网络流题目,主要就是考虑如何建图。

我们可以把每个点拆成两个点,一个入点,一个出点。

连边有以下两种:

  • 超级源向每个点出点、每个点入点向超级汇连一条容量为\(1\),代价为\(0\)的边。
  • 每个点出点向这个点在矩阵中相邻的点的入点连一条容量为\(1\)的边,若方向与格子原先方向相同,代价为\(0\),不同时代价为\(1\)。

然后跑最小费用最大流就可以了。

代码

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 15
#define INF 1e9
using namespace std;
int n,m;char a[N+5][N+5];
template<int PS,int ES> class Dinic//最小费用最大流
{
private:
#define Else(x) ((((x)-1)^1)+1)
#define add(x,y,f,c) (e[++ee].nxt=lnk[x],e[lnk[x]=ee].to=y,e[ee].F=f,e[ee].C=c)
int ee,lnk[PS+5],lst[PS+5],Iq[PS+5],F[PS+5],C[PS+5];queue<int> q;
struct edge {int to,nxt,F,C;}e[2*ES+5];
I bool SPFA()//SPFA找增广路
{
RI i,k;for(i=1;i<=2*n*m+2;++i) F[i]=C[i]=INF;C[S]=0,q.push(S),Iq[S]=1;
W(!q.empty())
{
for(Iq[k=q.front()]=0,q.pop(),i=lnk[k];i;i=e[i].nxt) e[i].F&&C[k]+e[i].C<C[e[i].to]&&
(
C[e[i].to]=C[k]+e[lst[e[i].to]=i].C,F[e[i].to]=min(F[k],e[i].F),
!Iq[e[i].to]&&(q.push(e[i].to),Iq[e[i].to]=1)
);
}return F[T]!=INF;
}
public:
int S,T;I Dinic() {S=1,T=2;}
I int PI(CI x,CI y) {return (x-1)*m+y+2;}I int PO(CI x,CI y) {return (x+n-1)*m+y+2;}
I void Add(CI x,CI y,CI f,CI c) {add(x,y,f,c),add(y,x,0,-c);}//连边
I void Solve()
{
RI x,t=0;W(SPFA())
{
x=T,t+=F[T]*C[T];//统计最小费用
W(x^S) e[lst[x]].F-=F[T],e[Else(lst[x])].F+=F[T],x=e[Else(lst[x])].to;//修改源到汇路径上的残量
}printf("%d",t);//输出最小费用
}
};Dinic<2*N*N+2,6*N*N> D;
int main()
{
RI i,j;for(scanf("%d%d",&n,&m),i=1;i<=n;++i) scanf("%s",a[i]+1);
for(i=1;i<=n;++i) for(j=1;j<=m;++j)
#define lst(x,t) ((x)^1?(x)-1:(t))
#define nxt(x,t) ((x)^(t)?(x)+1:1)
D.Add(D.S,D.PO(i,j),1,0),D.Add(D.PI(i,j),D.T,1,0),//与超级源、超级汇连边
D.Add(D.PO(i,j),D.PI(lst(i,n),j),1,a[i][j]!='U'),//与相邻点连边
D.Add(D.PO(i,j),D.PI(nxt(i,n),j),1,a[i][j]!='D'),//与相邻点连边
D.Add(D.PO(i,j),D.PI(i,lst(j,m)),1,a[i][j]!='L'),//与相邻点连边
D.Add(D.PO(i,j),D.PI(i,nxt(j,m)),1,a[i][j]!='R');//与相邻点连边
return D.Solve(),0;
}

【BZOJ3171】[TJOI2013] 循环格(网络流)的更多相关文章

  1. BZOJ3171 Tjoi2013 循环格

    传送门 Description 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位置(r,c) ,你可以沿着箭头 ...

  2. bzoj3171: [Tjoi2013]循环格(费用流)

    传送门 其实这题的建图并不难(虽然我并没有想出来) 首先,每一个点的入度和出度必须为$1$ 那么我们考虑拆点 每个点的出度点向它能到达的点的入度点连边,容量$1$,如果方向为原来的方向则费用$0$否则 ...

  3. Bzoj 3171: [Tjoi2013]循环格 费用流

    3171: [Tjoi2013]循环格 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 741  Solved: 463[Submit][Status][ ...

  4. [Tjoi2013]循环格

    [Tjoi2013]循环格 2014年3月18日1,7500 Description Input 第一行两个整数R,C.表示行和列,接下来R行,每行C个字符LRUD,表示左右上下. Output 一个 ...

  5. 洛谷 P3965 [TJOI2013]循环格 解题报告

    P3965 [TJOI2013]循环格 题目背景 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子. 每个元素有一个坐标(行,列),其中左上角元素坐标为\((0,0)\).给定一个起始位\ ...

  6. BZOJ_3171_[Tjoi2013]循环格_最小费用最大流

    BZOJ_3171_[Tjoi2013]循环格_最小费用最大流 Description 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为 ...

  7. [TJOI2013]循环格 费用流 BZOJ3171

    题目背景 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位(r,c),你可以沿着箭头方向在格子间行走.即:如果 ...

  8. 【bzoj3171】[Tjoi2013]循环格

    题目描述: 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位置(r,c) ,你可以沿着箭头防线在格子间行走.即 ...

  9. 【BZOJ 3171】 [Tjoi2013]循环格

    Description 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位置(r,c) ,你可以沿着箭头防线在格 ...

随机推荐

  1. 错题shell

    1.判断/root/class21/inittab.txt文件是否大于100行,如果大于,则显示”inittab is a big file.”否者显示”inittab is a small file ...

  2. DirectShow 应用开发过程

    本文准备总结一些 Direct Show 常用的API接口函数,方便以后查询回忆.如果这里没有你想了解的函数,你可以自行搜索MSDN + 函数名去 MSDN 查找你想要了解的函数,也可以查看百度百科相 ...

  3. react的this.setState中的坑

    react的this.setState中的有两个. 1.this.setState异步的,不能用同步的思维讨论问题 2.在进行组件通讯的回调的时候,this指向子组件,没有指向父亲这,怎么办呢.在 c ...

  4. 1+x证书web前端开发jquery专项练习测试题

    javascript程序设计-题库 1.下面哪一种不属于Jquery的选择器? A. 基本选择器 B. 层次选择器 C. 表单选择器 D. 节点选择器 答案: D 2.如果需要匹配包含文本的元素,用下 ...

  5. Ansible-Tower自动化运维管理环境 - 安装破解记录

    公司中实现运维自动化的架构中主要用到ansible,ansible脚本在部署服务器指令行中显得不太直观.Ansible-Tower(之前叫做awx)是将ansible的指令界面化,简明直观,简单易用. ...

  6. H5混合应用之上下文切换

    一.native/web/hybrid 简介 目前主流应用程序大体分为:Native App(原生应用).Web App(网页应用).Hybrid App(混合应用),它们三者的优缺点比较如下表: 应 ...

  7. PHP odbc_errormsg ODBC 函数

    定义和用法 odbc_errormsg - 获取最后一条错误消息 语法 odbc_errormsg ( [ resource $connection_id ] ) 返回包含最后一个ODBC错误消息的字 ...

  8. 配置VS Code+React开发环境

    1.安装node+npm 2.安装VS Code 3.选择工作区文件夹——右键点击在终端中打开 4.按照Using React in Visual Studio Code的文档进行操作 npm ins ...

  9. 【XML】XML基本结构以及XML-Schema约束

    XML 简介 1998年2月,W3C正式批准了可扩展标记语言的标准定义,可扩展标记语言可以对文档和数据进行结构化处理,从而能够在部门.客户和供应商之间进行交换,实现动态内容生成,企业集成和应用开发.可 ...

  10. 每天一点产品思考(5):Web端链接跳转在当前页面刷新还是新标签页打开?

    一.与交互设计师的突然撕逼         今天阿白在验收产品的时候,在博客首页打开一篇博文,是在原先的页面进行刷新,而不是新开一个标签页打开.阿白让开发改成在新标签页中打开,但是开发说这是设计师设计 ...