【BZOJ3171】[TJOI2013] 循环格(网络流)
大致题意: 给你一个循环格,每个格子有一个方向。问你至少修改多少格子,才能使从每个格子出发都能回到原格子。
建图
这是道网络流题目,主要就是考虑如何建图。
我们可以把每个点拆成两个点,一个入点,一个出点。
连边有以下两种:
- 超级源向每个点出点、每个点入点向超级汇连一条容量为\(1\),代价为\(0\)的边。
- 每个点出点向这个点在矩阵中相邻的点的入点连一条容量为\(1\)的边,若方向与格子原先方向相同,代价为\(0\),不同时代价为\(1\)。
然后跑最小费用最大流就可以了。
代码
#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 15
#define INF 1e9
using namespace std;
int n,m;char a[N+5][N+5];
template<int PS,int ES> class Dinic//最小费用最大流
{
private:
#define Else(x) ((((x)-1)^1)+1)
#define add(x,y,f,c) (e[++ee].nxt=lnk[x],e[lnk[x]=ee].to=y,e[ee].F=f,e[ee].C=c)
int ee,lnk[PS+5],lst[PS+5],Iq[PS+5],F[PS+5],C[PS+5];queue<int> q;
struct edge {int to,nxt,F,C;}e[2*ES+5];
I bool SPFA()//SPFA找增广路
{
RI i,k;for(i=1;i<=2*n*m+2;++i) F[i]=C[i]=INF;C[S]=0,q.push(S),Iq[S]=1;
W(!q.empty())
{
for(Iq[k=q.front()]=0,q.pop(),i=lnk[k];i;i=e[i].nxt) e[i].F&&C[k]+e[i].C<C[e[i].to]&&
(
C[e[i].to]=C[k]+e[lst[e[i].to]=i].C,F[e[i].to]=min(F[k],e[i].F),
!Iq[e[i].to]&&(q.push(e[i].to),Iq[e[i].to]=1)
);
}return F[T]!=INF;
}
public:
int S,T;I Dinic() {S=1,T=2;}
I int PI(CI x,CI y) {return (x-1)*m+y+2;}I int PO(CI x,CI y) {return (x+n-1)*m+y+2;}
I void Add(CI x,CI y,CI f,CI c) {add(x,y,f,c),add(y,x,0,-c);}//连边
I void Solve()
{
RI x,t=0;W(SPFA())
{
x=T,t+=F[T]*C[T];//统计最小费用
W(x^S) e[lst[x]].F-=F[T],e[Else(lst[x])].F+=F[T],x=e[Else(lst[x])].to;//修改源到汇路径上的残量
}printf("%d",t);//输出最小费用
}
};Dinic<2*N*N+2,6*N*N> D;
int main()
{
RI i,j;for(scanf("%d%d",&n,&m),i=1;i<=n;++i) scanf("%s",a[i]+1);
for(i=1;i<=n;++i) for(j=1;j<=m;++j)
#define lst(x,t) ((x)^1?(x)-1:(t))
#define nxt(x,t) ((x)^(t)?(x)+1:1)
D.Add(D.S,D.PO(i,j),1,0),D.Add(D.PI(i,j),D.T,1,0),//与超级源、超级汇连边
D.Add(D.PO(i,j),D.PI(lst(i,n),j),1,a[i][j]!='U'),//与相邻点连边
D.Add(D.PO(i,j),D.PI(nxt(i,n),j),1,a[i][j]!='D'),//与相邻点连边
D.Add(D.PO(i,j),D.PI(i,lst(j,m)),1,a[i][j]!='L'),//与相邻点连边
D.Add(D.PO(i,j),D.PI(i,nxt(j,m)),1,a[i][j]!='R');//与相邻点连边
return D.Solve(),0;
}
【BZOJ3171】[TJOI2013] 循环格(网络流)的更多相关文章
- BZOJ3171 Tjoi2013 循环格
传送门 Description 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位置(r,c) ,你可以沿着箭头 ...
- bzoj3171: [Tjoi2013]循环格(费用流)
传送门 其实这题的建图并不难(虽然我并没有想出来) 首先,每一个点的入度和出度必须为$1$ 那么我们考虑拆点 每个点的出度点向它能到达的点的入度点连边,容量$1$,如果方向为原来的方向则费用$0$否则 ...
- Bzoj 3171: [Tjoi2013]循环格 费用流
3171: [Tjoi2013]循环格 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 741 Solved: 463[Submit][Status][ ...
- [Tjoi2013]循环格
[Tjoi2013]循环格 2014年3月18日1,7500 Description Input 第一行两个整数R,C.表示行和列,接下来R行,每行C个字符LRUD,表示左右上下. Output 一个 ...
- 洛谷 P3965 [TJOI2013]循环格 解题报告
P3965 [TJOI2013]循环格 题目背景 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子. 每个元素有一个坐标(行,列),其中左上角元素坐标为\((0,0)\).给定一个起始位\ ...
- BZOJ_3171_[Tjoi2013]循环格_最小费用最大流
BZOJ_3171_[Tjoi2013]循环格_最小费用最大流 Description 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为 ...
- [TJOI2013]循环格 费用流 BZOJ3171
题目背景 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位(r,c),你可以沿着箭头方向在格子间行走.即:如果 ...
- 【bzoj3171】[Tjoi2013]循环格
题目描述: 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位置(r,c) ,你可以沿着箭头防线在格子间行走.即 ...
- 【BZOJ 3171】 [Tjoi2013]循环格
Description 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位置(r,c) ,你可以沿着箭头防线在格 ...
随机推荐
- C++内置二分查找用法
c++内置二分查找 #include < algorithm > 一.binary_search:查找某个元素是否出现.函数模板:binary_search(arr[], arr[]+si ...
- WPF DataGrid 双击行 获得绑定数据
原文:WPF DataGrid 双击行 获得绑定数据 1)增加事件 2)增加对象获取 1)事件代码 Datagrid 增加事件 MouseDoubleClick="dataGrid_Mous ...
- iptraf: command not found
在Linux上安装iptraf,然后执行命令时报错,iptraf: command not found 解决办法:iptraf-ng包的二进制文件是iptraf-ng.使用命令iptraf-ng即可 ...
- 【洛谷4173】残缺的字符串(重拾FFT)
点此看题面 大致题意: 有一个长度为\(n\)的字符串\(A\)和一个长度为\(m\)的字符串\(B\),其中存在一些字符'*'可以与任意字符匹配.求\(B\)中所有满足条件的位置,使得从这一位置开始 ...
- eclipse中的clean操作
在eclipse中写JavaWeb项目时,有时候会出现代码修改了,但是执行的效果还是修改之前的,这时候clean一下就会解决问题 1.clean操作 Project---->clean---&g ...
- DevExpress启动时的全屏SplashScreen
使用DevExpress启动时弹出"正在加载"的Logo,而且是全屏,这种感觉不太好. 原因是使用了DocmentManager控件,当DocmentManager初始化如果耗时较 ...
- 《细说PHP》第四版 样章 第18章 数据库抽象层PDO 10
18.8 设计完美分页类 数据记录列表几乎出现在Web项目的每个模块中,假设一张表中有十几万条记录,我们不可能一次全都显示出来,当然也不能仅显示几十条.为了解决这样的矛盾,通常在读取时设置以分页的形 ...
- wpf file embeded resource is readonly,Copy always will copy the file and its folder to the bin folder
Wpf file embeded resource will compile the file into the assembly and it will be readonly and can no ...
- java基础(27):线程安全、线程同步、等待唤醒机制
1. 多线程 如果有多个线程在同时运行,而这些线程可能会同时运行这段代码.程序每次运行结果和单线程运行的结果是一样的,而且其他的变量的值也和预期的是一样的,就是线程安全的. 我们通过一个案例,演示线程 ...
- DB2 catalog 编目
(步骤)ap用户: (1)进入db2 db2 (2)catalog database 命令 catalog db list (3)查看本地节点目录.IP.节点名.服务名称.目录条目类型 list no ...