normal equation(正规方程)
normal equation(正规方程)
- 正规方程是通过求解下面的方程来找出使得代价函数最小的参数的:
\]
- 假设我们的训练集特征矩阵为 \(X\)(包含了\(x_0=1\))并且我们的训练集结果为向量 \(y\),则利用正规方程解出向量:
\]
- 梯度下降与正规方程的比较:
- 梯度下降:需要选择学习率\(\alpha\);需要多次迭代;当特征数量n大时也能较好适用,适用于各种类型的模型;
- 正规方程:不需要选择学习率\(\alpha\);不需要迭代,一次运算就可以得出\(\theta\)的最优解;需要计算\({\left( {X^T} X \right)}^{-1}\);如果特征数量n较大则运算代价大,因为矩阵逆的计算时间复杂度为\(O(n^3)\),通常来说当n小于10000时还是可以接受的,只适用于线性模型,不适合逻辑回归模型等其他模型。
编程实现
在编程作业1.1:单变量线性回归的基础上实现:
# 正规方程
def normalEqn(X, y):
theta = np.linalg.inv(X.T@X)@X.T@y #X.T@X等价于X.T.dot(X);np.linalg.inv():矩阵求逆
return theta
final_theta2=normalEqn(X, y)#感觉和批量梯度下降的theta的值有点差距
final_theta2

在之前运行完梯度下降算法之后,我们输出\(\theta\)的值如下:

可以看出两种方法求出的\(\theta\)值基本相似。
normal equation(正规方程)的更多相关文章
- Linear regression with multiple variables(多特征的线型回归)算法实例_梯度下降解法(Gradient DesentMulti)以及正规方程解法(Normal Equation)
,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, , ...
- 正规方程 Normal Equation
正规方程 Normal Equation 前几篇博客介绍了一些梯度下降的有用技巧,特征缩放(详见http://blog.csdn.net/u012328159/article/details/5103 ...
- Normal Equation Algorithm
和梯度下降法一样,Normal Equation(正规方程法)算法也是一种线性回归算法(Linear Regression Algorithm).与梯度下降法通过一步步计算来逐步靠近最佳θ值不同,No ...
- coursera机器学习笔记-多元线性回归,normal equation
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...
- (三)用Normal Equation拟合Liner Regression模型
继续考虑Liner Regression的问题,把它写成如下的矩阵形式,然后即可得到θ的Normal Equation. Normal Equation: θ=(XTX)-1XTy 当X可逆时,(XT ...
- 【转】Derivation of the Normal Equation for linear regression
I was going through the Coursera "Machine Learning" course, and in the section on multivar ...
- 5种方法推导Normal Equation
引言: Normal Equation 是最基础的最小二乘方法.在Andrew Ng的课程中给出了矩阵推到形式,本文将重点提供几种推导方式以便于全方位帮助Machine Learning用户学习. N ...
- 机器学习入门:Linear Regression与Normal Equation -2017年8月23日22:11:50
本文会讲到: (1)另一种线性回归方法:Normal Equation: (2)Gradient Descent与Normal Equation的优缺点: 前面我们通过Gradient Desce ...
- Normal Equation
一.Normal Equation 我们知道梯度下降在求解最优参数\(\theta\)过程中需要合适的\(\alpha\),并且需要进行多次迭代,那么有没有经过简单的数学计算就得到参数\(\theta ...
随机推荐
- 用cmd运行java可以javac不行(win10)
今天发现个有趣的问题,用cmd运行java可以javac不行.(win10) java-home和classpath配置没有问题,最后发现问提出先在path,在这里看并没有异常. 在上面图片中点击编辑 ...
- Linux学习43 CCNA网络知识-计算机网络基础
一.Linux网络配置属性 1.计算机网络 TCP/IP:协议簇,协议栈(使用的模型) ISO组织制定了OSI七层模型协议栈(学习的模型) 2.网卡 a.MAC:Media Access Contro ...
- Maven的安装和创建项目的过程
一.下载Maven包和配置环境变量 1.将下载好的maven包放到一个目录中:目录中不能有汉字和空格 2.配置环境变量 3.配置path路径 二.配置阿里云私服 1.找到setting目录,配置下载j ...
- Spring 事件(2)- 自定义事件
Spring 系列教程 Spring 框架介绍 Spring 框架模块 Spring开发环境搭建(Eclipse) 创建一个简单的Spring应用 Spring 控制反转容器(Inversion of ...
- Web基础之Mybatis
Web基础之Mybatis 对比JdbcTempalte,mybatis才能称得上是框架,JdbcTempalte顶多算是工具类,同时,对比Hibernate,Mybatis又有更多的灵活性,算是 ...
- Android 为控件添加点击涟漪效果
Android在5.0版为Button默认添加了点击时的涟漪效果,而且在其他的控件上也可以轻松的实现这种炫酷的效果.涟漪效果可以分为两种,一种时有边界的涟漪,另一种时无边界的涟漪.所谓的有边界,即涟漪 ...
- 【LeetCode】课程表
[问题]现在你总共有 n 门课需要选,记为 0 到 n-1. 在选修某些课程之前需要一些先修课程.例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们: [0,1] 给定课程总量 ...
- 【LeetCode】四数之和
[问题]给定一个包含 n 个整数的数组 nums 和一个目标值 target,判断 nums 中是否存在四个元素 a,b,c 和 d ,使得 a + b + c + d 的值与 target 相等?找 ...
- 虚拟机vmware vmnet8 未识别(转)
原文链接:https://blog.csdn.net/windows_q/article/details/50678646
- Upgrade to 17.1 from 17.0 problem:UnicodeEncodeError: 'ascii' codec can't encode character '\xc4' in position 50: ordinal not in range(128)
最近 gentoo 从 17.0 更新到 17.1, 需要手动进行升级配置,使用 unsymlink-lib -p --finish 这一步的时候报错,报错如下: /usr/lib/python-ex ...