题目传送门

  题目大意:总共有k次弹出宝物的机会,宝物共有n种,弹出不同的宝物的概率相同的,是每个宝物都有价值,和选择这个宝物的限制(必须具有特定的宝物),问最后的最优期望是多少。

  思路:“正向推概率,反向推期望。”,一看数据范围就知道肯定是状压。

  这里推荐一个大佬的博客 https://blog.csdn.net/nameofcsdn/article/details/52082746

  考虑f[ i ][ j ],j为二进制数,表示在第i个格子之前具有了 j 的状态,那在这个格子,对于每一个物体,有能吃和不能吃两种情况。(用( j | t)==j 来判断j是否包含了t)。

  对于能吃情况(即满足限制条件),那我可以选择吃或者不吃,由于我已经算出了第i+1层的所有期望,所以我只要选择吃和不吃里的最大值就可以了,由于这个格子弹出的物品总共有n种情况,所以要记得概率要除以n。

  

      f[i][j]+=max(f[i+][j],f[i+][j|(<<(x-))]+w[x])/n;//每一个x都对应1/n的情况,每个i,j都有两个方向,即这个东西吃还是不吃

  对于不能吃的情况,只能选择不吃。

      f[i][j]+=f[i+][j]/n;//只有一个方向

  所以这样dp结束后,f[ 1 ][ 0 ]就是我们要的答案。

  为什么期望要倒着做呢,第一,正着做wa了。。。第二,倒着做保证了dp时全是合法的情况。

#include<bits/stdc++.h>
#define CLR(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
double dp[][],f[][],w[];
int t[];
int k,n;
int main(){
cin>>k>>n;
for(int i=;i<=n;i++)
{
scanf("%lf",&w[i]);
int x;
while(scanf("%d",&x),x){
t[i]|=(<<(x-));
}
}
for(int i=k;i>;i--)
{
for(int j=;j<(<<n);j++)
{
for (int x=;x<=n;x++)
{
if((j|t[x])==j)f[i][j]+=max(f[i+][j],f[i+][j|(<<(x-))]+w[x])/n;//每一个x都对应1/n的情况,每个i,j都有两个方向,即这个东西吃还是不吃
else f[i][j]+=f[i+][j]/n;//只有一个方向
}
}
}
printf("%.6f\n",f[][]);
}

1076: [SCOI2008]奖励关

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 3830  Solved: 2071
[Submit][Status][Discuss]

Description

  你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,
每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。
 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1次系统都抛出宝物1(
这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n。 获取第i种宝物将得到Pi
分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过
一次,才能吃第i种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi可
以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。 假设你
采取最优策略,平均情况你一共能在奖励关得到多少分值?

Input

  第一行为两个正整数k和n,即宝物的数量和种类。以下n行分别描述一种宝物,其中第一个整数代表分值,随
后的整数依次代表该宝物的各个前提宝物(各宝物编号为1到n),以0结尾。

Output

  输出一个实数,保留六位小数,即在最优策略下平均情况的得分。

Sample Input

1 2
1 0
2 0

Sample Output

1.500000

HINT

【数据规模】

1<=k<=100,1<=n<=15,分值为[-10^6,10^6]内的整数。

bzoj1076 奖励关 期望dp的更多相关文章

  1. 【bzoj1076】[SCOI2008]奖励关 期望dp+状态压缩dp

    题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再 ...

  2. bzoj1076: [SCOI2008]奖励关(期望dp+状压dp)

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2989  Solved: 1557[Submit][Statu ...

  3. 【BZOJ】1076 [SCOI2008]奖励关 期望DP+状压DP

    [题意]n种宝物,k关游戏,每关游戏给出一种宝物,可捡可不捡.每种宝物有一个价值(有负数).每个宝物有前提宝物列表,必须在前面的关卡取得列表宝物才能捡起这个宝物,求期望收益.k<=100,n&l ...

  4. bzoj1076 奖励关(概率dp)(状态压缩)

    BZOJ 1076 [SCOI2008]奖励关 Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须 ...

  5. 洛谷 P2473 [SCOI2008]奖励关 ( 期望DP )

    题目链接 题意 : 中文题.点链接 分析 : 第一道有关概率期望的DP 有个大部分情况下通用的结论 概率正推.期望反推 原因不明.其实是没有查到较好的解释 这题由于有一些取物品的先决条件在这里 而且观 ...

  6. [BZOJ1076] 奖励关

    Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的 ...

  7. BZOJ.1076.[SCOI2008]奖励关(概率DP 倒推)

    题目链接 BZOJ 洛谷 真的题意不明啊.. \(Description\) 你有k次选择的机会,每次将从n种物品中随机一件给你,你可以选择选或不选.选择它会获得这种物品的价值:选择一件物品前需要先选 ...

  8. [BZOJ1076][SCOI2008]奖励关(概率DP)

    Code #include <cstdio> #include <algorithm> #include <cstring> #define N 110 #defi ...

  9. BZOJ 1076: [SCOI2008]奖励关(概率+dp)

    首先嘛,看了这么久概率论真的不错啊。看到就知道怎么写(其实也挺容易的= =) 直接数位dp就行了 CODE: #include<cstdio> #include<cstring> ...

随机推荐

  1. fail-fast 与 fail-save 机制的区别

    link:https://blog.csdn.net/bigtree_3721/article/details/67095084

  2. 7. Reverse Integer 反转整数

    [抄题]: 将一个整数中的数字进行颠倒,当颠倒后的整数溢出时,返回 0 (标记为 32 位整数).   样例 给定 x = 123,返回 321 给定 x = -123,返回 -321 [暴力解法]: ...

  3. 浅析junit4及扩展实践

    junit框架相关源代码分析,网上已经有很多了,本篇不做过多相关解说,主要还是要自己多读相关源代码.本篇主要对自动化测试过程相关的测试用例,测试数据,测试结果结合junit做相关扩展说明. 如果要解读 ...

  4. Solidity oraclize query apikey加密

    solidity 程序中如果用到oraclize query,api调用需要apikey,则最好加密apikey,否则公开solidity代码时会连同apikey一起公开. 加密方法: https:/ ...

  5. 数组 array 矩阵 list 数据框 dataframe

    转自 :  http://blog.csdn.net/u011253874/article/details/43115447 <span style="font-size:14px;& ...

  6. js 禁止后退键

    function doKey(e) { var ev = e || window.event; //获取event对象 var obj = ev.target || ev.srcElement; // ...

  7. Linux、Windows中的相对路径和绝对路径

    获取系统的分隔符的方式:System.getProperty("file.separator")   Windows为 \   Linux为/ Windows绝对路径: 以盘符开始 ...

  8. 编写高质量代码改善C#程序的157个建议——建议59:不要在不恰当的场合下引发异常

    建议59:不要在不恰当的场合下引发异常 常见的不易于引发异常的情况是对在可控范围内的输入和输出引发异常. private void SaveUser3(User user) { ) { throw n ...

  9. 对request,session,application作用域形象理解

    看到一篇比较有意思的文章,分享一下.原网址:http://blog.csdn.net/rushkid02/article/details/8063792 几乎所有的Web开发语言都支持Session功 ...

  10. Async异步委托

    /// <summary> /// 异步委托 /// </summary> public delegate void AsyncHandler(); public static ...