在Win7虚拟机下搭建Hadoop2.6.0+Spark1.4.0单机环境
Hadoop的安装和配置可以参考我之前的文章:在Win7虚拟机下搭建Hadoop2.6.0伪分布式环境。
本篇介绍如何在Hadoop2.6.0基础上搭建spark1.4.0单机环境。
1. 软件准备
scala-2.11.7.tgz
spark-1.4.0-bin-hadoop2.6.tgz
都可以从官网下载。
2. scala安装和配置
scala-2.11.7.tgz解压缩即可。我解压缩到目录/home/vm/tools/scala,之后配置~/.bash_profile环境变量。
|
#scala export SCALA_HOME=/home/vm/tools/scala export PATH=$SCALA_HOME/bin:$PATH |
使用source ~/.bash_profile生效。
验证scala安装是否成功:

交互式使用scala:

3. spark安装和配置
解压缩spark-1.4.0-bin-hadoop2.6.tgz到/home/vm/tools/spark目录,之后配置~/.bash_profile环境变量。
|
#spark export SPARK_HOME=/home/vm/tools/spark export PATH=$SPARK_HOME/bin:$PATH |
修改$SPARK_HOME/conf/spark-env.sh
|
export SPARK_HOME=/home/vm/tools/spark export SCALA_HOME=/home/vm/tools/scala export JAVA_HOME=/home/vm/tools/jdk export SPARK_MASTER_IP=192.168.62.129 export SPARK_WORKER_MEMORY=512m |
修改$SPARK_HOME/conf/spark-defaults.conf
|
spark.master spark://192.168.62.129:7077 spark.serializer org.apache.spark.serializer.KryoSerializer |
修改$SPARK_HOME/conf/spark-defaults.conf
|
192.168.62.129 这是我测试机器的IP地址 |
启动spark
|
cd /home/vm/tools/spark/sbin sh start-all.sh |
测试Spark是否安装成功
|
cd $SPARK_HOME/bin/ ./run-example SparkPi |
SparkPi的执行日志:
vm@ubuntu:~/tools/spark/bin$ ./run-example SparkPi Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties // :: INFO SparkContext: Running Spark version 1.4. // :: WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable // :: INFO SecurityManager: Changing view acls to: vm // :: INFO SecurityManager: Changing modify acls to: vm // :: INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(vm); users with modify permissions: Set(vm) // :: INFO Slf4jLogger: Slf4jLogger started // :: INFO Remoting: Starting remoting // :: INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriver@192.168.62.129:34337] // :: INFO Utils: Successfully started service 'sparkDriver' on port . // :: INFO SparkEnv: Registering MapOutputTracker // :: INFO SparkEnv: Registering BlockManagerMaster // :: INFO DiskBlockManager: Created local directory at /tmp/spark--e4c4-4dcc-8c16-f46fce5e657d/blockmgr-be03da6d-31fe-43dd-959c-6cfa4307b269 // :: INFO MemoryStore: MemoryStore started with capacity 267.3 MB // :: INFO HttpFileServer: HTTP File server directory is /tmp/spark--e4c4-4dcc-8c16-f46fce5e657d/httpd-fdc26a4d-c0b6-4fc9-9dee-fb085191ee5a // :: INFO HttpServer: Starting HTTP Server // :: INFO Utils: Successfully started service 'HTTP file server' on port . // :: INFO SparkEnv: Registering OutputCommitCoordinator // :: INFO Utils: Successfully started service 'SparkUI' on port . // :: INFO SparkUI: Started SparkUI at http://192.168.62.129:4040 // :: INFO SparkContext: Added JAR file:/home/vm/tools/spark/lib/spark-examples-1.4.-hadoop2.6.0.jar at http://192.168.62.129:56880/jars/spark-examples-1.4.0-hadoop2.6.0.jar with timestamp 1438099360726 // :: INFO Executor: Starting executor ID driver on host localhost // :: INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port . // :: INFO NettyBlockTransferService: Server created on // :: INFO BlockManagerMaster: Trying to register BlockManager // :: INFO BlockManagerMasterEndpoint: Registering block manager localhost: with 267.3 MB RAM, BlockManagerId(driver, localhost, ) // :: INFO BlockManagerMaster: Registered BlockManager // :: INFO SparkContext: Starting job: reduce at SparkPi.scala: // :: INFO DAGScheduler: Got job (reduce at SparkPi.scala:) with output partitions (allowLocal=false) // :: INFO DAGScheduler: Final stage: ResultStage (reduce at SparkPi.scala:) // :: INFO DAGScheduler: Parents of final stage: List() // :: INFO DAGScheduler: Missing parents: List() // :: INFO DAGScheduler: Submitting ResultStage (MapPartitionsRDD[] at map at SparkPi.scala:), which has no missing parents // :: INFO MemoryStore: ensureFreeSpace() called with curMem=, maxMem= // :: INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 1888.0 B, free 267.3 MB) // :: INFO MemoryStore: ensureFreeSpace() called with curMem=, maxMem= // :: INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 1186.0 B, free 267.3 MB) // :: INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on localhost: (size: 1186.0 B, free: 267.3 MB) // :: INFO SparkContext: Created broadcast from broadcast at DAGScheduler.scala: // :: INFO DAGScheduler: Submitting missing tasks from ResultStage (MapPartitionsRDD[] at map at SparkPi.scala:) // :: INFO TaskSchedulerImpl: Adding task set 0.0 with tasks // :: INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID , localhost, PROCESS_LOCAL, bytes) // :: INFO TaskSetManager: Starting task 1.0 in stage 0.0 (TID , localhost, PROCESS_LOCAL, bytes) // :: INFO Executor: Running task 1.0 in stage 0.0 (TID ) // :: INFO Executor: Running task 0.0 in stage 0.0 (TID ) // :: INFO Executor: Fetching http://192.168.62.129:56880/jars/spark-examples-1.4.0-hadoop2.6.0.jar with timestamp 1438099360726 // :: INFO Utils: Fetching http://192.168.62.129:56880/jars/spark-examples-1.4.0-hadoop2.6.0.jar to /tmp/spark-78277899-e4c4-4dcc-8c16-f46fce5e657d/userFiles-27c8dd76-e417-4d13-9bfd-a978cbbaacd1/fetchFileTemp5302506499464337647.tmp // :: INFO Executor: Adding file:/tmp/spark--e4c4-4dcc-8c16-f46fce5e657d/userFiles-27c8dd76-e417-4d13-9bfd-a978cbbaacd1/spark-examples-1.4.-hadoop2.6.0.jar to class loader // :: INFO Executor: Finished task 1.0 in stage 0.0 (TID ). bytes result sent to driver // :: INFO Executor: Finished task 0.0 in stage 0.0 (TID ). bytes result sent to driver // :: INFO TaskSetManager: Finished task 1.0 in stage 0.0 (TID ) in ms on localhost (/) // :: INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID ) in ms on localhost (/) // :: INFO DAGScheduler: ResultStage (reduce at SparkPi.scala:) finished in 2.817 s // :: INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool // :: INFO DAGScheduler: Job finished: reduce at SparkPi.scala:, took 4.244145 s Pi is roughly 3.14622 // :: INFO SparkUI: Stopped Spark web UI at http://192.168.62.129:4040 // :: INFO DAGScheduler: Stopping DAGScheduler // :: INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped! // :: INFO Utils: path = /tmp/spark--e4c4-4dcc-8c16-f46fce5e657d/blockmgr-be03da6d-31fe-43dd-959c-6cfa4307b269, already present as root for deletion. // :: INFO MemoryStore: MemoryStore cleared // :: INFO BlockManager: BlockManager stopped // :: INFO BlockManagerMaster: BlockManagerMaster stopped // :: INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped! // :: INFO SparkContext: Successfully stopped SparkContext // :: INFO Utils: Shutdown hook called // :: INFO Utils: Deleting directory /tmp/spark--e4c4-4dcc-8c16-f46fce5e657d
在浏览器中打开地址 http://192.168.62.129:8080 可以查看spark集群和任务基本情况:

4. spark-shell工具
在/home/vm/tools/spark/bin下执行./spark-shell,即可进入spark-shell交互界面。通过spark-shell可以进行一些调试工作。
vm@ubuntu:~/tools/spark/bin$ ./spark-shell log4j:WARN No appenders could be found for logger (org.apache.hadoop.metrics2.lib.MutableMetricsFactory). log4j:WARN Please initialize the log4j system properly. log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info. Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties // :: INFO SecurityManager: Changing view acls to: vm // :: INFO SecurityManager: Changing modify acls to: vm // :: INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(vm); users with modify permissions: Set(vm) // :: INFO HttpServer: Starting HTTP Server // :: INFO Utils: Successfully started service 'HTTP class server' on port . Welcome to ____ __ / __/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /___/ .__/\_,_/_/ /_/\_\ version 1.4. /_/ Using Scala version 2.10. (Java HotSpot(TM) -Bit Server VM, Java 1.7.0_80) Type in expressions to have them evaluated. Type :help for more information. // :: INFO SparkContext: Running Spark version 1.4. // :: INFO SecurityManager: Changing view acls to: vm // :: INFO SecurityManager: Changing modify acls to: vm // :: INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(vm); users with modify permissions: Set(vm) // :: INFO Slf4jLogger: Slf4jLogger started // :: INFO Remoting: Starting remoting // :: INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriver@192.168.62.129:59312] // :: INFO Utils: Successfully started service 'sparkDriver' on port . // :: INFO SparkEnv: Registering MapOutputTracker // :: INFO SparkEnv: Registering BlockManagerMaster // :: INFO DiskBlockManager: Created local directory at /tmp/spark-621ebed4-8bd8-4e87-9ea5-08b5c7f05e98/blockmgr-a12211dd-e0ba--999c-6249b9c44d8a // :: INFO MemoryStore: MemoryStore started with capacity 267.3 MB // :: INFO HttpFileServer: HTTP File server directory is /tmp/spark-621ebed4-8bd8-4e87-9ea5-08b5c7f05e98/httpd-8512d909-5a81--8fbd-2b2ed741ae26 // :: INFO HttpServer: Starting HTTP Server // :: INFO Utils: Successfully started service 'HTTP file server' on port . // :: INFO SparkEnv: Registering OutputCommitCoordinator // :: INFO Utils: Successfully started service 'SparkUI' on port . // :: INFO SparkUI: Started SparkUI at http://192.168.62.129:4040 // :: INFO Executor: Starting executor ID driver on host localhost // :: INFO Executor: Using REPL class URI: http://192.168.62.129:56464 // :: INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port . // :: INFO NettyBlockTransferService: Server created on // :: INFO BlockManagerMaster: Trying to register BlockManager // :: INFO BlockManagerMasterEndpoint: Registering block manager localhost: with 267.3 MB RAM, BlockManagerId(driver, localhost, ) // :: INFO BlockManagerMaster: Registered BlockManager // :: INFO SparkILoop: Created spark context.. Spark context available as sc. // :: INFO HiveContext: Initializing execution hive, version 0.13. // :: INFO HiveMetaStore: : Opening raw store with implemenation class:org.apache.hadoop.hive.metastore.ObjectStore // :: INFO ObjectStore: ObjectStore, initialize called // :: INFO Persistence: Property datanucleus.cache.level2 unknown - will be ignored // :: INFO Persistence: Property hive.metastore.integral.jdo.pushdown unknown - will be ignored // :: WARN Connection: BoneCP specified but not present in CLASSPATH (or one of dependencies) // :: WARN Connection: BoneCP specified but not present in CLASSPATH (or one of dependencies) // :: INFO ObjectStore: Setting MetaStore object pin classes with hive.metastore.cache.pinobjtypes="Table,StorageDescriptor,SerDeInfo,Partition,Database,Type,FieldSchema,Order" // :: INFO MetaStoreDirectSql: MySQL check failed, assuming we are not on mysql: Lexical error at line , column . Encountered: "@" (), after : "". // :: INFO Datastore: The class "org.apache.hadoop.hive.metastore.model.MFieldSchema" is tagged as "embedded-only" so does not have its own datastore table. // :: INFO Datastore: The class "org.apache.hadoop.hive.metastore.model.MOrder" is tagged as "embedded-only" so does not have its own datastore table. // :: INFO Datastore: The class "org.apache.hadoop.hive.metastore.model.MFieldSchema" is tagged as "embedded-only" so does not have its own datastore table. // :: INFO Datastore: The class "org.apache.hadoop.hive.metastore.model.MOrder" is tagged as "embedded-only" so does not have its own datastore table. // :: INFO ObjectStore: Initialized ObjectStore // :: WARN ObjectStore: Version information not found in metastore. hive.metastore.schema.verification is not enabled so recording the schema version 0.13.1aa // :: INFO HiveMetaStore: Added admin role in metastore // :: INFO HiveMetaStore: Added public role in metastore // :: INFO HiveMetaStore: No user is added in admin role, since config is empty // :: INFO SessionState: No Tez session required at this point. hive.execution.engine=mr. // :: INFO SparkILoop: Created sql context (with Hive support).. SQL context available as sqlContext. scala>
下一篇将介绍分别用eclipse和IDEA搭建spark开发环境。
在Win7虚拟机下搭建Hadoop2.6.0+Spark1.4.0单机环境的更多相关文章
- 在Win7虚拟机下搭建Hadoop2.6.0伪分布式环境
近几年大数据越来越火热.由于工作需要以及个人兴趣,最近开始学习大数据相关技术.学习过程中的一些经验教训希望能通过博文沉淀下来,与网友分享讨论,作为个人备忘. 第一篇,在win7虚拟机下搭建hadoop ...
- 搭建Hadoop2.6.0+Spark1.1.0集群环境
前几篇文章主要介绍了单机模式的hadoop和spark的安装和配置,方便开发和调试.本文主要介绍,真正集群环境下hadoop和spark的安装和使用. 1. 环境准备 集群有三台机器: master: ...
- Win7 32bit下一个hadoop2.5.1源代码编译平台的搭建各种错误遇到
从小白在安装hadoop困难和错误时遇到说起,同时,我们也希望能得到上帝的指示. 首先hadoop更新速度非常快,最新的是hadoop2.5.1,因此就介绍下在安装2.5.1时遇到的各种困难. 假设直 ...
- CentOS7下搭建hadoop2.7.3完全分布式
这里搭建的是3个节点的完全分布式,即1个nameNode,2个dataNode,分别如下: CentOS-master nameNode 192.168.11.128 CentOS-node1 ...
- windows下搭建hadoop-2.6.0本地idea开发环境
概述 本文记录windows下hadoop本地开发环境的搭建: OS:windows hadoop执行模式:独立模式 安装包结构: Hadoop-2.6.0-Windows.zip - cygwinI ...
- 在CentOS7下搭建Hadoop2.9.0集群
系统环境:CentOS 7 JDK版本:jdk-8u191-linux-x64 MYSQL版本:5.7.26 Hadoop版本:2.9.0 Hive版本:2.3.4 Host Name Ip User ...
- Eclipse下搭建Hadoop2.4.0开发环境
一.安装Eclipse 下载Eclipse,解压安装,例如安装到/usr/local,即/usr/local/eclipse 4.3.1版本下载地址:http://pan.baidu.com/s/1e ...
- centos7 下搭建hadoop2.9 分布式集群
首先说明,本文记录的是博主搭建的3节点的完全分布式hadoop集群的过程,环境是centos 7,1个nameNode,2个dataNode,如下: 1.首先,创建好3个Centos7的虚拟机,具体的 ...
- myeclipse下搭建hadoop2.7.3开发环境
需要下载的文件:链接:http://pan.baidu.com/s/1i5yRyuh 密码:ms91 一 下载并编译 hadoop-eclipse-plugin-2.7.3.jar 二 将had ...
随机推荐
- hadoop 天气案例
对下面一组气温数据进行处理,得到每个月份最高的两个气温值 2018-12-12 14:30 25c2018-12-12 15:30 26c2017-12-12 12:30 36c2019-01-01 ...
- jsp的动作标签
常用的标签: 1. forward 请求转发 [基本不使用] <==> request.getRequestDispatcher(url).forward(request,respon ...
- 【MSDN】 SqlServer DBCC解析
汇总学习下SqlServer的DBCC指令. DBCC:Transact-SQL 编程语言提供 DBCC 语句以作为 SQL Server 的数据库控制台命令. 数据库控制台命令语句可分为以下类别. ...
- lua继承
lua中其实是没有类的,有的只是表(table) lua查找一个表元素时的规则,其实就是如下3个步骤: 1.在表中查找,如果找到,返回该元素,找不到则往下看: 2.判断该表是否有元表,如果没有元表,返 ...
- SpringBoot ------ 使用AOP处理请求
一.AOP统一处理请求日志 1.spring的两大核心:AOP , IOC 2.面向对象OOP关注的是将需求功能垂直,划分为不同的,并且相对独立的, 会封装成良好的类,并且类有属于自己的行为. ...
- jQuery使用最广泛的javascript函数库
网站建设中,jQuery之最方便的的库了,当用到其中的JavaScript函数库的时候,不禁会想居然还有这么简单的操作? 一.选择网页元素 jQuery的基本设计思想和主要用法,就是"选择某 ...
- 模仿ecshop建立木瓜商城数据库(MySQL)
1. 安装ecshop(打开gd扩展) 2. 使用图形化界面工具,如phpmyadmin查看数据.(以前用命令行,主要锻炼代码熟练度!) # 建木瓜库 create database mugua ch ...
- Microsoft BI - SSRS
1. Shared Dataset 功能在 SQL Server 2008 R2 / 2012 / 2014 的下列三个版本中不支持,详情请参考此处: Express Edition with Adv ...
- setExecuteExistingDelayedTasksAfterShutdownPolicy方法与setContinueExistingPeriodicTasksAfterShutdownPolicy方法的比较
一.setExecuteExistingDelayedTasksAfterShutdownPolicy方法 这个方法大多是与schedule方法和shutdown方法搭配使用的. public voi ...
- pdf2swf 转换时报错。This file is too complex to render- SWF only supports 65536 shapes at once
在使用swftools转换pdf 到swf的时候报错,有如下说明:if the pdf contains too many images / shapes, pdf2swf will fail wit ...