import numpy as np

from matplotlib import  pyplot as plt
from sklearn import neighbors, datasets
from matplotlib.colors import ListedColormap
from sklearn.neural_network import MLPClassifier ## 加载数据集
np.random.seed(0)
# 使用 scikit-learn 自带的 iris 数据集
iris=datasets.load_iris()
# 使用前两个特征,方便绘图
X=iris.data[:,0:2]
# 标记值
Y=iris.target
data=np.hstack((X,Y.reshape(Y.size,1)))
# 混洗数据。因为默认的iris 数据集:前50个数据是类别0,中间50个数据是类别1,末尾50个数据是类别2.混洗将打乱这个顺序
np.random.shuffle(data)
X=data[:,:-1]
Y=data[:,-1]
train_x=X[:-30]
train_y=Y[:-30]
# 最后30个样本作为测试集
test_x=X[-30:]
test_y=Y[-30:] def plot_classifier_predict_meshgrid(ax,clf,x_min,x_max,y_min,y_max):
'''
绘制 MLPClassifier 的分类结果 :param ax: Axes 实例,用于绘图
:param clf: MLPClassifier 实例
:param x_min: 第一维特征的最小值
:param x_max: 第一维特征的最大值
:param y_min: 第二维特征的最小值
:param y_max: 第二维特征的最大值
:return: None
'''
plot_step = 0.02 # 步长
xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),np.arange(y_min, y_max, plot_step))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
# 绘图
ax.contourf(xx, yy, Z, cmap=plt.cm.Paired) def plot_samples(ax,x,y):
'''
绘制二维数据集 :param ax: Axes 实例,用于绘图
:param x: 第一维特征
:param y: 第二维特征
:return: None
'''
n_classes = 3
# 颜色数组。每个类别的样本使用一种颜色
plot_colors = "bry"
for i, color in zip(range(n_classes), plot_colors):
idx = np.where(y == i)
# 绘图
ax.scatter(x[idx, 0], x[idx, 1], c=color,label=iris.target_names[i], cmap=plt.cm.Paired) def mlpclassifier_iris():
'''
使用 MLPClassifier 预测调整后的 iris 数据集
'''
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
classifier=MLPClassifier(activation='logistic',max_iter=10000,hidden_layer_sizes=(30,))
classifier.fit(train_x,train_y)
train_score=classifier.score(train_x,train_y)
test_score=classifier.score(test_x,test_y)
x_min, x_max = train_x[:, 0].min() - 1, train_x[:, 0].max() + 2
y_min, y_max = train_x[:, 1].min() - 1, train_x[:, 1].max() + 2
plot_classifier_predict_meshgrid(ax,classifier,x_min,x_max,y_min,y_max)
plot_samples(ax,train_x,train_y)
ax.legend(loc='best')
ax.set_xlabel(iris.feature_names[0])
ax.set_ylabel(iris.feature_names[1])
ax.set_title("train score:%f;test score:%f"%(train_score,test_score))
plt.show() mlpclassifier_iris()

def mlpclassifier_iris_hidden_layer_sizes():
'''
使用 MLPClassifier 预测调整后的 iris 数据集。考察不同的 hidden_layer_sizes 的影响 :return: None
'''
fig=plt.figure()
# 候选的 hidden_layer_sizes 参数值组成的数组
hidden_layer_sizes=[(10,),(30,),(100,),(5,5),(10,10),(30,30)]
for itx,size in enumerate(hidden_layer_sizes):
ax=fig.add_subplot(2,3,itx+1)
classifier=MLPClassifier(activation='logistic',max_iter=10000,hidden_layer_sizes=size)
classifier.fit(train_x,train_y)
train_score=classifier.score(train_x,train_y)
test_score=classifier.score(test_x,test_y)
x_min, x_max = train_x[:, 0].min() - 1, train_x[:, 0].max() + 2
y_min, y_max = train_x[:, 1].min() - 1, train_x[:, 1].max() + 2
plot_classifier_predict_meshgrid(ax,classifier,x_min,x_max,y_min,y_max)
plot_samples(ax,train_x,train_y)
ax.legend(loc='best')
ax.set_xlabel(iris.feature_names[0])
ax.set_ylabel(iris.feature_names[1])
ax.set_title("layer_size:%s;train score:%f;test score:%f"%(size,train_score,test_score))
plt.show() mlpclassifier_iris_hidden_layer_sizes()

def mlpclassifier_iris_ativations():
'''
使用 MLPClassifier 预测调整后的 iris 数据集。考察不同的 activation 的影响
'''
fig=plt.figure()
# 候选的激活函数字符串组成的列表
ativations=["logistic","tanh","relu"]
for itx,act in enumerate(ativations):
ax=fig.add_subplot(1,3,itx+1)
classifier=MLPClassifier(activation=act,max_iter=10000,hidden_layer_sizes=(30,))
classifier.fit(train_x,train_y)
train_score=classifier.score(train_x,train_y)
test_score=classifier.score(test_x,test_y)
x_min, x_max = train_x[:, 0].min() - 1, train_x[:, 0].max() + 2
y_min, y_max = train_x[:, 1].min() - 1, train_x[:, 1].max() + 2
plot_classifier_predict_meshgrid(ax,classifier,x_min,x_max,y_min,y_max)
plot_samples(ax,train_x,train_y)
ax.legend(loc='best')
ax.set_xlabel(iris.feature_names[0])
ax.set_ylabel(iris.feature_names[1])
ax.set_title("activation:%s;train score:%f;test score:%f"%(act,train_score,test_score))
plt.show() mlpclassifier_iris_ativations()

def mlpclassifier_iris_algorithms():
'''
使用 MLPClassifier 预测调整后的 iris 数据集。考察不同的 algorithm 的影响 :return: None
'''
fig=plt.figure()
algorithms=["lbfgs","sgd","adam"] # 候选的算法字符串组成的列表
for itx,algo in enumerate(algorithms):
ax=fig.add_subplot(1,3,itx+1)
classifier=MLPClassifier(activation="tanh",max_iter=10000,hidden_layer_sizes=(30,),solver=algo)
classifier.fit(train_x,train_y)
train_score=classifier.score(train_x,train_y)
test_score=classifier.score(test_x,test_y)
x_min, x_max = train_x[:, 0].min() - 1, train_x[:, 0].max() + 2
y_min, y_max = train_x[:, 1].min() - 1, train_x[:, 1].max() + 2
plot_classifier_predict_meshgrid(ax,classifier,x_min,x_max,y_min,y_max)
plot_samples(ax,train_x,train_y)
ax.legend(loc='best')
ax.set_xlabel(iris.feature_names[0])
ax.set_ylabel(iris.feature_names[1])
ax.set_title("algorithm:%s;train score:%f;test score:%f"%(algo,train_score,test_score))
plt.show() mlpclassifier_iris_algorithms()

def mlpclassifier_iris_eta():
'''
使用 MLPClassifier 预测调整后的 iris 数据集。考察不同的学习率的影响
'''
fig=plt.figure()
etas=[0.1,0.01,0.001,0.0001] # 候选的学习率值组成的列表
for itx,eta in enumerate(etas):
ax=fig.add_subplot(2,2,itx+1)
classifier=MLPClassifier(activation="tanh",max_iter=1000000,
hidden_layer_sizes=(30,),solver='sgd',learning_rate_init=eta)
classifier.fit(train_x,train_y)
iter_num=classifier.n_iter_
train_score=classifier.score(train_x,train_y)
test_score=classifier.score(test_x,test_y)
x_min, x_max = train_x[:, 0].min() - 1, train_x[:, 0].max() + 2
y_min, y_max = train_x[:, 1].min() - 1, train_x[:, 1].max() + 2
plot_classifier_predict_meshgrid(ax,classifier,x_min,x_max,y_min,y_max)
plot_samples(ax,train_x,train_y)
ax.legend(loc='best')
ax.set_xlabel(iris.feature_names[0])
ax.set_ylabel(iris.feature_names[1])
ax.set_title("eta:%f;train score:%f;test score:%f;iter_num:%d"%(eta,train_score,test_score,iter_num))
plt.show() mlpclassifier_iris_eta()

吴裕雄 python 机器学习——人工神经网络感知机学习算法的应用的更多相关文章

  1. 吴裕雄 python 机器学习——人工神经网络与原始感知机模型

    import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from ...

  2. 吴裕雄 python 机器学习——数据预处理字典学习模型

    from sklearn.decomposition import DictionaryLearning #数据预处理字典学习DictionaryLearning模型 def test_Diction ...

  3. 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  4. 吴裕雄 python 机器学习——集成学习随机森林RandomForestClassifier分类模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  5. 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  6. 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  7. 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  8. 吴裕雄 python 人工智能——基于神经网络算法在智能医疗诊断中的应用探索代码简要展示

    #K-NN分类 import os import sys import time import operator import cx_Oracle import numpy as np import ...

  9. 吴裕雄 python 机器学习——分类决策树模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...

随机推荐

  1. python接口自动化-requests-toolbelt处理multipart/form-data

    1.requests-toolbelt官方文档:https://pypi.org/project/requests-toolbelt/ 2.环境安装 pip install requests-tool ...

  2. Phalanx HDU - 2859 dp

    #include<cstdio> #include<cstring> #include<algorithm> #include<iostream> us ...

  3. shell输入输出

    输出 一.echo命令介绍 1.功能:将内容输出到默认显示设备 2.语法:echo [-ne] [字符串] :输出的字符串以空格隔开,默认会加上换行符 3.选项 -n 不要在最后自动换行 -e 如果字 ...

  4. Django 初试水(三)

    在前面的一和二中,分别实现了一些基础的操作,数据库和 Django 自带的管理界面,接下来,主要是创建我们自己的界面(视图). 访问一个地址,对应的服务器直接返回一个视图.这是最常见的交互. 就好比访 ...

  5. ActiveMQ使用JDBC持久化

    步骤一:创建一个数据库            步骤二:配置activemq.xml配置文件                1.在persistenceAdapter加入如下配置 <!--crea ...

  6. 关于在Ubuntu中无法使用tree命令的原因

    初学linux系统的时候使用的是Ubuntu的操作系统,边看视频边学习,却发现很多命令行在自己使用的时候没有效果,只会盲目的百度,后面回过头来仔细一看才发现,原来终端早就给你答案了,只是自己一看到英语 ...

  7. Keep、小红书、美图…独角兽App能拿到新一轮救命钱吗?

    大多数人热爱手机,不是因为时尚的外观或者结实的零部件,而是因琳琅满目的App赋予其太多的功能.智能手机最先是清理掉人类的零碎时间,现如今又开始肢解我们大块的时间,或者说,智能手机本身就是生活.在如此背 ...

  8. xss和sql注入学习1

    在本地搭建一个存在漏洞的网站,验证xss漏洞和SQL注入的利用方法. 使用phpStudy工具搭建一个美食CMS网站平台. 0x01  xss测试 打开调试模式,定位姓名栏输入框: 尝试在value中 ...

  9. spring security和java web token整合

    思路: spring security 1.用户输入用户名密码. 2.验证:从库中(可以是内存.数据库等)查询该用户的密码.角色,验证用户名和密码是否正确.如果正确,则将填充Authenticatio ...

  10. ORA-01843: not a valid month

    问题描述 ORA-01843: not a valid month oracle数据库插入出现无效的月份