#用户注册、登录模块
#数据库脚本
CREATE TABLE usertable(
userid number(8) primary key not null ,
username varchar(50) NULL,
password varchar(50) NOT NULL,
sex varchar(10) NOT NULL,
age number(3) NOT NULL,
province varchar2(50) null,
area varchar(50) NOT NULL
);
commit; create sequence usertable_seq
minvalue 1
maxvalue 999
start with 1
increment by 1
NOCYCLE
nocache;
commit; insert into usertable (userid, username , password, sex,age, province ,area ) values ( usertable_seq.Nextval , '小明','','男',13,'广东省', '广州市' );
insert into usertable (userid, username , password, sex,age, province ,area ) values ( usertable_seq.Nextval , '小红','','女',14,'广东省', '广州市' );
insert into usertable (userid, username , password, sex,age, province ,area ) values ( usertable_seq.Nextval , '小东','','男',15,'广东省', '广州市' );
commit;
insert into usertable (userid, username , password, sex,age, province ,area ) values ( usertable_seq.Nextval , '小东东','','男',15,'广东省', '广州市' );
commit;
#注册
import cx_Oracle
import numpy as np conn=cx_Oracle.connect('doctor/admin@localhost:1521/tszr')
cursor = conn.cursor() username = input("请输入用户名:")
password = input("请输入密码:")
sex = input("请输入性别:")
age = int(input("请输入年龄:"))
province = input("请输入省份:")
area = input("请输入所属区:") sql = "insert into usertable (userid, username , password, sex,age, province ,area ) values (usertable_seq.Nextval,'%s','%s','%s',%d,'%s','%s')" % (username, password,sex,age,province,area)
cursor.execute(sql)
conn.commit()
print("注册成功!")

#登录
import cx_Oracle
import numpy as np conn=cx_Oracle.connect('doctor/admin@localhost:1521/tszr')
cursor = conn.cursor() username = input("请输入用户名:")
password = input("请输入密码:") sql = "select userid from usertable where username='%s' and password='%s'" % (username,password)
cursor.execute(sql)
rows = cursor.fetchall()
uid = []
for row in rows:
uid.append(row[0])
if(len(uid)==1):
print("登录成功!")
else:
print("登录失败!")

#诊断记录表
#数据库脚本 CREATE TABLE zhenduanjilutable(
userid number(8) not null ,
username varchar(50) NULL,
sex varchar(10) NOT NULL,
age number(3) NOT NULL,
province varchar2(50) null,
area varchar(50) NOT NULL,
bumen varchar(26) NOT NULL,
ke varchar(26) NOT NULL,
result varchar(26) NOT NULL,
chufang varchar2(2220),
jianyi varchar2(1020),
yiyuaan varchar2(100),
yisheng varchar2(1100),
jianchaxiang varchar2(1100),
zhenduanriqi date default sysdate
);
commit; insert into zhenduanjilutable (userid,username,sex,age,province,area,bumen,ke,result,chufang,jianyi,yiuaan,yisheng,jianchaxiang)
values (%d,'%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s') % (,,,,,,,,,,,,,)
#智能初诊
import cx_Oracle
import numpy as np conn=cx_Oracle.connect('doctor/admin@localhost:1521/tszr')
cursor = conn.cursor() uid = uid[0]
sql = "select username,sex,age,province,area from usertable where userid=%d" % uid
cursor.execute(sql)
rows = cursor.fetchall()
userinfo = []
for row in rows:
userinfo.append(row[0])
userinfo.append(row[1])
userinfo.append(row[2])
userinfo.append(row[3])
userinfo.append(row[4])
print(userinfo)

import cx_Oracle
import numpy as np conn=cx_Oracle.connect('doctor/admin@localhost:1521/tszr')
cursor = conn.cursor() sql = "select mname from hy_bumen"
cursor.execute(sql)
rows = cursor.fetchall()
bumen = []
for row in rows:
bumen.append(row[0])
# print(bumen) bumen = "外科"
sql = "select MENZHENID from hy_bumen where MNAME='%s'" % bumen
cursor.execute(sql)
rows = cursor.fetchall()
bumenid = []
for row in rows:
bumenid.append(row[0]) sql = "select ke from hy_keid where MENZHENID=%d" % bumenid[0]
cursor.execute(sql)
rows = cursor.fetchall()
kelist = []
for row in rows:
kelist.append(row[0])
# print(kelist)
ke = "胸外科"
sql = "select keid from hy_keid where ke='%s'" % ke
cursor.execute(sql)
rows = cursor.fetchall()
keid = []
for row in rows:
keid.append(row[0]) sql = "select QUESTION from HY_QUESTID where QUID=%d" % keid[0]
cursor.execute(sql)
rows = cursor.fetchall()
question = []
for row in rows:
question.append(row[0])
question = question[0].split(",")
# print(question)
answer = []
for i,j in zip(question,np.arange(len(question))):
print("问题"+str(j+1)+":是否"+i+":")
print(" A、正常 B、较轻 C、明显 D、非常严重")
temp = input("请根据实际情况选择上面的一项:")
if(temp=="A"):
answer.append(1)
elif(temp=="B"):
answer.append(2)
elif(temp=="C"):
answer.append(3)
else:
answer.append(4)
# print(answer)

#使用神经网络探索数据集
import sys
import os
import time
import operator
import cx_Oracle
import numpy as np
import pandas as pd
import tensorflow as tf conn=cx_Oracle.connect('doctor/admin@localhost:1521/tszr')
cursor = conn.cursor() surgery = "外科"
surgeryChest = "胸外科" #one-hot编码
def onehot(labels):
n_sample = len(labels)
n_class = max(labels) + 1
onehot_labels = np.zeros((n_sample, n_class))
onehot_labels[np.arange(n_sample), labels] = 1
return onehot_labels #获取数据集
def getdata(surgery,surgeryChest):
sql = "select feature1,feature2,feature3,feature4,feature5,trainLable from menzhen where surgery='%s' and surgeryChest='%s'" % (surgery,surgeryChest)
cursor.execute(sql)
rows = cursor.fetchall()
dataset = []
lables = []
for row in rows:
temp = []
temp.append(row[0])
temp.append(row[1])
temp.append(row[2])
temp.append(row[3])
temp.append(row[4])
dataset.append(temp)
if(row[5]==3):
lables.append(0)
elif(row[5]==6):
lables.append(1)
else:
lables.append(2)
dataset = np.array(dataset)
lables = np.array(lables)
dataset = dataset.astype(np.float32)
labless = onehot(lables)
return dataset,labless #获取测试数据集
def gettestdata(surgery,surgeryChest):
sql = "select feature1,feature2,feature3,feature4,feature5,trainLable from test where surgery='%s' and surgeryChest='%s'" % (surgery,surgeryChest)
cursor.execute(sql)
rows = cursor.fetchall()
testdataset = []
testlables = []
for row in rows:
temp = []
temp.append(row[0])
temp.append(row[1])
temp.append(row[2])
temp.append(row[3])
temp.append(row[4])
testdataset.append(temp)
if(row[5]==3):
testlables.append(0)
elif(row[5]==6):
testlables.append(1)
else:
testlables.append(2)
testdataset = np.array(testdataset)
testlables = np.array(testlables)
testdataset = testdataset.astype(np.float32)
testlabless = onehot(testlables)
return testdataset,testlabless dataset,labless = getdata(surgery,surgeryChest)
# testdataset,testlables = gettestdata(surgery,surgeryChest) # dataset = dataset[0:100]
# labless = labless[0:100] x_data = tf.placeholder("float32", [None, 5])
y_data = tf.placeholder("float32", [None, 3]) weight = tf.Variable(tf.ones([5, 3]))
bias = tf.Variable(tf.ones([3])) #使用softmax激活函数
y_model = tf.nn.softmax(tf.matmul(x_data, weight) + bias) #y_model = tf.nn.relu(tf.matmul(x_data, weight) + bias) # loss = tf.reduce_sum(tf.pow((y_model - y_data), 2)) #使用交叉熵作为损失函数
loss = -tf.reduce_sum(y_data*tf.log(y_model)) # train_step = tf.train.GradientDescentOptimizer(1e-4).minimize(loss) #使用AdamOptimizer优化器
# train_step = tf.train.AdamOptimizer(1e-4).minimize(loss) train_step = tf.train.MomentumOptimizer(1e-4,0.9).minimize(loss) #评估模型
correct_prediction = tf.equal(tf.argmax(y_model, 1), tf.argmax(y_data, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
# start = time.time()
for _ in range(10):
for i in range(int(len(dataset)/100)):
sess.run(train_step, feed_dict={x_data:dataset[i:i+100,:], y_data:labless[i:i+100,:]}) # print("模型准确率",sess.run(accuracy, feed_dict={x_data:testdataset , y_data:testlables}))
# end = time.time()
# print("模型训练和测试公耗时:%.2f 秒" % (end-start)) xl_weight = sess.run(weight)
useranswer = [[1, 2, 3, 4, 4]]*3
W = np.dot(xl_weight,useranswer)
result=0
for i in range(len(W[0])):
for j in range(len(W[0,:])):
if(i==j):
result += W[i][j]
result = int(result/5)
# print(result) if(result<=3):
result = 3
elif(result<=6):
result = 6
else:
result = 9 sql = "select ILL_NAME from ill_result_tbZ where FAMILY='%s' and ILL_ID=%d" % (ke,result)
cursor.execute(sql)
rows = cursor.fetchall()
ILL_NAME = []
for row in rows:
ILL_NAME.append(row[0]) firstResult = ILL_NAME[0]
##
print("=======================系统初诊单===================")
print("姓名:"+userinfo[0])
print("性别:"+userinfo[1])
print("年龄:"+str(userinfo[2]))
print("省份:"+userinfo[3])
print("所属区:"+userinfo[4])
print("初诊部门:"+bumen)
print("科目:"+ke)
##
print("系统智能诊断结果:"+firstResult) if(firstResult[:2]=="疑似"):
firstResult = "疑似患病" sql = "select PRESCRIPTION_1,PRESCRIPTION_2,PRESCRIPTION_3,PRESCRIPTION_4,PRESCRIPTION_5,PRESCRIPTION_6,PRESCRIPTION_7,PRESCRIPTION_8,PRESCRIPTION_9,PRESCRIPTION_10,PRESCRIPTION_11,PRESCRIPTION_12,PRESCRIPTION_13,PRESCRIPTION_14,PRESCRIPTION_15 from PRESCRIPTION where SURGERY='%s'and SURGERYCHEST='%s' and ILLNAME='%s'" % (bumen,ke,firstResult)
cursor.execute(sql)
rows = cursor.fetchall()
chufanggrace = []
for row in rows:
temp = []
temp.append(row[0])
temp.append(row[1])
temp.append(row[2])
temp.append(row[3])
temp.append(row[4])
temp.append(row[5])
temp.append(row[6])
temp.append(row[7])
temp.append(row[8])
temp.append(row[9])
temp.append(row[10])
temp.append(row[11])
temp.append(row[12])
temp.append(row[13])
temp.append(row[14])
chufanggrace.append(temp) PRESCRIPTION_sum = []
for col in range(np.shape(chufanggrace)[1]):
temp = 0
for row in range(np.shape(chufanggrace)[0]):
temp += chufanggrace[row][col]
PRESCRIPTION_sum.append(temp) b = sorted(enumerate(PRESCRIPTION_sum),key=lambda x:x[1],reverse=True)[:3]
index = []
for i in b:
index.append(i[0]) sql = "select PRESCRIPTIONINFO,HEALTH from PRESCRIPTIONINFO where DEPARTMENT='%s' and FAMILY='%s' and ILL_NAME='%s'" % (bumen,ke,firstResult)
cursor.execute(sql)
rows = cursor.fetchall()
chufanglist = []
jianyilist = []
for row in rows:
chufanglist.append(row[0])
jianyilist.append(row[1])
best_chufang = []
best_jianyi = []
for i in index:
best_chufang.append(chufanglist[i])
best_jianyi.append(jianyilist[i])
chufang_str = ""
jianyi_str = ""
for i,j in zip(best_chufang,range(len(best_chufang))):
chufang_str += "系统智能筛选优良处方"+str(j+1)+":" + i +"。"
print("系统智能筛选优良处方"+str(j+1)+":" + i) for i,j in zip(best_jianyi,range(len(best_jianyi))):
jianyi_str += "系统智能筛选优良养生建议"+str(j+1)+":" + i+"。"
print("系统智能筛选优良养生建议"+str(j+1)+":" + i) sql = "select HOSTITALNAME from DOCTORHOSTITALADRREST where PROVINCE='%s' and ADMINISTRATIVE='%s'" % (userinfo[3],userinfo[4])
cursor.execute(sql)
rows = cursor.fetchall()
yiyuan = []
for row in rows:
yiyuan.append(row[0])
for i in yiyuan:
print("系统智能匹配你所在地区附件的医院:"+i) sql = "select ADDRACTION,NAME,SUMMARY from DOCTORS where FAMILY='%s'" % (ke)
cursor.execute(sql)
rows = cursor.fetchall()
yisheng = []
for row in rows:
yisheng.append(row[0])
yisheng.append(row[1])
yisheng.append(row[2])
print("系统为你推荐全国相关出色医生所在医院信息:"+yisheng[0])
print("系统为你推荐全国相关出色医生姓名信息:"+yisheng[1])
print("系统为你推荐全国相关出色医生简介信息:"+yisheng[2])
yisheng_str = ""
yisheng_str += "医生所在医院:"+yisheng[0]
yisheng_str += "医生姓名:"+yisheng[1]
yisheng_str += "医生简介:"+yisheng[2] sql = "select CHACKPRO from CHACKPROJECT where FAMILY='%s'" % (ke)
cursor.execute(sql)
rows = cursor.fetchall()
jiancha = []
for row in rows:
jiancha.append(row[0])
print("系统建议你到相关正规医院检查以下身体指标:"+jiancha[0])
jianchax = ""
jianchax += "系统建议你到相关正规医院检查以下身体指标:"+jiancha[0] sql = "insert into zhenduanjilutable (userid,username,sex,age,province,area,bumen,ke,result,chufang,jianyi,yiyuaan,yisheng,jianchaxiang) values (%d,'%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s')" % (uid,userinfo[0],userinfo[1],userinfo[2],userinfo[3],userinfo[4],bumen,ke,firstResult,chufang_str,jianyi_str,yiyuan[0],yisheng_str,jianchax)
cursor.execute(sql)
conn.commit()
print("此次智能诊断完成,欢迎你下次继续使用:天生自然健康智能医疗系统!") print("特别提醒、注意:该系统的所有诊断只是作为参考,有必需要的用户请到相关正规医院接受相关专家医生完成检查、治疗等流程...")
print("系统建议:保持一颗善良、沉稳、宁静和广博的平常心度过每一个清晨和夜晚...")
print("祝你们每一位人都开开心心、健健康康、平平安安...阖家安康,如意吉祥......")

吴裕雄 python 人工智能——智能医疗系统后台用户注册、登录和初诊简约版代码展示的更多相关文章

  1. 吴裕雄 python 人工智能——智能医疗系统后台用户复诊模块简约版代码展示

    #复诊 import sys import os import time import operator import cx_Oracle import numpy as np import pand ...

  2. 吴裕雄 PYTHON 人工智能——智能医疗系统后台智能分诊模块及系统健康养生公告简约版代码展示

    #coding:utf-8 import sys import cx_Oracle import numpy as np import pandas as pd import tensorflow a ...

  3. 吴裕雄 python 人工智能——基于神经网络算法在智能医疗诊断中的应用探索代码简要展示

    #K-NN分类 import os import sys import time import operator import cx_Oracle import numpy as np import ...

  4. 吴裕雄 PYTHON 人工智能——基于MASK_RCNN目标检测(5)

    import os import sys import numpy as np import tensorflow as tf import matplotlib import matplotlib. ...

  5. 吴裕雄 PYTHON 人工智能——基于MASK_RCNN目标检测(4)

    import os import sys import random import math import re import time import numpy as np import tenso ...

  6. 吴裕雄 python 人工智能——基于Mask_RCNN目标检测(3)

    import os import sys import random import math import re import time import numpy as np import cv2 i ...

  7. 吴裕雄 python 人工智能——基于Mask_RCNN目标检测(2)

    import os import sys import itertools import math import logging import json import re import random ...

  8. 吴裕雄 python 人工智能——基于Mask_RCNN目标检测(1)

    import os import sys import random import math import numpy as np import skimage.io import matplotli ...

  9. 吴裕雄--python学习笔记:爬虫基础

    一.什么是爬虫 爬虫:一段自动抓取互联网信息的程序,从互联网上抓取对于我们有价值的信息. 二.Python爬虫架构 Python 爬虫架构主要由五个部分组成,分别是调度器.URL管理器.网页下载器.网 ...

随机推荐

  1. 【C语言】输入一个整数x并判断x是否存在于数组a中

    #include<stdio.h> int main() { ] = { ,,,,,,,, };//数组初始化 printf("请输入要查找的数据:\n"); scan ...

  2. 边捆绑: Content Importance Based Edge Bundling for Graph Visualization

    Problem 当图所要表达的信息较多时, 图中可能会充满交叉的线[1-2], 甚至整个显示空间都被点.线所覆盖, 这时想通过观察来获取图中的重要信息将会变得非常困难, 这种现象称为图的视觉混乱. K ...

  3. Hibernate项目的基本步骤和一些错误提示

    以数据库中有一张user表为例: 1.编写POJO持久化类User.javaPOJO(Plain Old Java Objects),简单的Java对象.一个POJO类不用继承任何类,也无须实现任何接 ...

  4. ORM表单操作

    准备工作: 1.在orm操作表单之前需要先修改下django中连接的数据库,默认连接的是SQLit3,这里我们修改成mysql 2.mysql使用的版本是5.6,已经安装好了,直接连接就可以使用 创建 ...

  5. python之路之反射

    这个是上两个的加强版

  6. docker跨主机链接

    三种方式 一,使用网桥实现跨主机容器连接

  7. 路飞-Redis的使用,登录注册接口

    复习 """ 1.git项目开发 提供公钥成为开发者.copy项目.开发项目 先commit.再pull(可能出现冲突).最后push 特殊功能可以新建dev的子分支进行 ...

  8. html中实现数据的显示和隐藏

    Author: YangQingQing <!DOCTYPE html><html><meta http-equiv="Content-Type" c ...

  9. 4.用springboot写的第一个程序--helloworld

    这是我自己在controller层建的hello类 运行,选画方框的那个.我查了一晚上,可算知道为啥运行不了了. 然后再浏览器输入网址就ok了 为了大力!好好学习!

  10. JavaScript对象之对象标签和对象序列化

    对象标签有三种:proto.class和extensible. 一.proto标签 例如我新建了一个person对象,那么其__proto__则指向Person.prototype,然后Person. ...