吴裕雄 python 人工智能——智能医疗系统后台用户注册、登录和初诊简约版代码展示
#用户注册、登录模块
#数据库脚本
CREATE TABLE usertable(
userid number(8) primary key not null ,
username varchar(50) NULL,
password varchar(50) NOT NULL,
sex varchar(10) NOT NULL,
age number(3) NOT NULL,
province varchar2(50) null,
area varchar(50) NOT NULL
);
commit; create sequence usertable_seq
minvalue 1
maxvalue 999
start with 1
increment by 1
NOCYCLE
nocache;
commit; insert into usertable (userid, username , password, sex,age, province ,area ) values ( usertable_seq.Nextval , '小明','','男',13,'广东省', '广州市' );
insert into usertable (userid, username , password, sex,age, province ,area ) values ( usertable_seq.Nextval , '小红','','女',14,'广东省', '广州市' );
insert into usertable (userid, username , password, sex,age, province ,area ) values ( usertable_seq.Nextval , '小东','','男',15,'广东省', '广州市' );
commit;
insert into usertable (userid, username , password, sex,age, province ,area ) values ( usertable_seq.Nextval , '小东东','','男',15,'广东省', '广州市' );
commit;
#注册
import cx_Oracle
import numpy as np conn=cx_Oracle.connect('doctor/admin@localhost:1521/tszr')
cursor = conn.cursor() username = input("请输入用户名:")
password = input("请输入密码:")
sex = input("请输入性别:")
age = int(input("请输入年龄:"))
province = input("请输入省份:")
area = input("请输入所属区:") sql = "insert into usertable (userid, username , password, sex,age, province ,area ) values (usertable_seq.Nextval,'%s','%s','%s',%d,'%s','%s')" % (username, password,sex,age,province,area)
cursor.execute(sql)
conn.commit()
print("注册成功!")

#登录
import cx_Oracle
import numpy as np conn=cx_Oracle.connect('doctor/admin@localhost:1521/tszr')
cursor = conn.cursor() username = input("请输入用户名:")
password = input("请输入密码:") sql = "select userid from usertable where username='%s' and password='%s'" % (username,password)
cursor.execute(sql)
rows = cursor.fetchall()
uid = []
for row in rows:
uid.append(row[0])
if(len(uid)==1):
print("登录成功!")
else:
print("登录失败!")

#诊断记录表
#数据库脚本 CREATE TABLE zhenduanjilutable(
userid number(8) not null ,
username varchar(50) NULL,
sex varchar(10) NOT NULL,
age number(3) NOT NULL,
province varchar2(50) null,
area varchar(50) NOT NULL,
bumen varchar(26) NOT NULL,
ke varchar(26) NOT NULL,
result varchar(26) NOT NULL,
chufang varchar2(2220),
jianyi varchar2(1020),
yiyuaan varchar2(100),
yisheng varchar2(1100),
jianchaxiang varchar2(1100),
zhenduanriqi date default sysdate
);
commit; insert into zhenduanjilutable (userid,username,sex,age,province,area,bumen,ke,result,chufang,jianyi,yiuaan,yisheng,jianchaxiang)
values (%d,'%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s') % (,,,,,,,,,,,,,)
#智能初诊
import cx_Oracle
import numpy as np conn=cx_Oracle.connect('doctor/admin@localhost:1521/tszr')
cursor = conn.cursor() uid = uid[0]
sql = "select username,sex,age,province,area from usertable where userid=%d" % uid
cursor.execute(sql)
rows = cursor.fetchall()
userinfo = []
for row in rows:
userinfo.append(row[0])
userinfo.append(row[1])
userinfo.append(row[2])
userinfo.append(row[3])
userinfo.append(row[4])
print(userinfo)

import cx_Oracle
import numpy as np conn=cx_Oracle.connect('doctor/admin@localhost:1521/tszr')
cursor = conn.cursor() sql = "select mname from hy_bumen"
cursor.execute(sql)
rows = cursor.fetchall()
bumen = []
for row in rows:
bumen.append(row[0])
# print(bumen) bumen = "外科"
sql = "select MENZHENID from hy_bumen where MNAME='%s'" % bumen
cursor.execute(sql)
rows = cursor.fetchall()
bumenid = []
for row in rows:
bumenid.append(row[0]) sql = "select ke from hy_keid where MENZHENID=%d" % bumenid[0]
cursor.execute(sql)
rows = cursor.fetchall()
kelist = []
for row in rows:
kelist.append(row[0])
# print(kelist)
ke = "胸外科"
sql = "select keid from hy_keid where ke='%s'" % ke
cursor.execute(sql)
rows = cursor.fetchall()
keid = []
for row in rows:
keid.append(row[0]) sql = "select QUESTION from HY_QUESTID where QUID=%d" % keid[0]
cursor.execute(sql)
rows = cursor.fetchall()
question = []
for row in rows:
question.append(row[0])
question = question[0].split(",")
# print(question)
answer = []
for i,j in zip(question,np.arange(len(question))):
print("问题"+str(j+1)+":是否"+i+":")
print(" A、正常 B、较轻 C、明显 D、非常严重")
temp = input("请根据实际情况选择上面的一项:")
if(temp=="A"):
answer.append(1)
elif(temp=="B"):
answer.append(2)
elif(temp=="C"):
answer.append(3)
else:
answer.append(4)
# print(answer)

#使用神经网络探索数据集
import sys
import os
import time
import operator
import cx_Oracle
import numpy as np
import pandas as pd
import tensorflow as tf conn=cx_Oracle.connect('doctor/admin@localhost:1521/tszr')
cursor = conn.cursor() surgery = "外科"
surgeryChest = "胸外科" #one-hot编码
def onehot(labels):
n_sample = len(labels)
n_class = max(labels) + 1
onehot_labels = np.zeros((n_sample, n_class))
onehot_labels[np.arange(n_sample), labels] = 1
return onehot_labels #获取数据集
def getdata(surgery,surgeryChest):
sql = "select feature1,feature2,feature3,feature4,feature5,trainLable from menzhen where surgery='%s' and surgeryChest='%s'" % (surgery,surgeryChest)
cursor.execute(sql)
rows = cursor.fetchall()
dataset = []
lables = []
for row in rows:
temp = []
temp.append(row[0])
temp.append(row[1])
temp.append(row[2])
temp.append(row[3])
temp.append(row[4])
dataset.append(temp)
if(row[5]==3):
lables.append(0)
elif(row[5]==6):
lables.append(1)
else:
lables.append(2)
dataset = np.array(dataset)
lables = np.array(lables)
dataset = dataset.astype(np.float32)
labless = onehot(lables)
return dataset,labless #获取测试数据集
def gettestdata(surgery,surgeryChest):
sql = "select feature1,feature2,feature3,feature4,feature5,trainLable from test where surgery='%s' and surgeryChest='%s'" % (surgery,surgeryChest)
cursor.execute(sql)
rows = cursor.fetchall()
testdataset = []
testlables = []
for row in rows:
temp = []
temp.append(row[0])
temp.append(row[1])
temp.append(row[2])
temp.append(row[3])
temp.append(row[4])
testdataset.append(temp)
if(row[5]==3):
testlables.append(0)
elif(row[5]==6):
testlables.append(1)
else:
testlables.append(2)
testdataset = np.array(testdataset)
testlables = np.array(testlables)
testdataset = testdataset.astype(np.float32)
testlabless = onehot(testlables)
return testdataset,testlabless dataset,labless = getdata(surgery,surgeryChest)
# testdataset,testlables = gettestdata(surgery,surgeryChest) # dataset = dataset[0:100]
# labless = labless[0:100] x_data = tf.placeholder("float32", [None, 5])
y_data = tf.placeholder("float32", [None, 3]) weight = tf.Variable(tf.ones([5, 3]))
bias = tf.Variable(tf.ones([3])) #使用softmax激活函数
y_model = tf.nn.softmax(tf.matmul(x_data, weight) + bias) #y_model = tf.nn.relu(tf.matmul(x_data, weight) + bias) # loss = tf.reduce_sum(tf.pow((y_model - y_data), 2)) #使用交叉熵作为损失函数
loss = -tf.reduce_sum(y_data*tf.log(y_model)) # train_step = tf.train.GradientDescentOptimizer(1e-4).minimize(loss) #使用AdamOptimizer优化器
# train_step = tf.train.AdamOptimizer(1e-4).minimize(loss) train_step = tf.train.MomentumOptimizer(1e-4,0.9).minimize(loss) #评估模型
correct_prediction = tf.equal(tf.argmax(y_model, 1), tf.argmax(y_data, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
# start = time.time()
for _ in range(10):
for i in range(int(len(dataset)/100)):
sess.run(train_step, feed_dict={x_data:dataset[i:i+100,:], y_data:labless[i:i+100,:]}) # print("模型准确率",sess.run(accuracy, feed_dict={x_data:testdataset , y_data:testlables}))
# end = time.time()
# print("模型训练和测试公耗时:%.2f 秒" % (end-start)) xl_weight = sess.run(weight)
useranswer = [[1, 2, 3, 4, 4]]*3
W = np.dot(xl_weight,useranswer)
result=0
for i in range(len(W[0])):
for j in range(len(W[0,:])):
if(i==j):
result += W[i][j]
result = int(result/5)
# print(result) if(result<=3):
result = 3
elif(result<=6):
result = 6
else:
result = 9 sql = "select ILL_NAME from ill_result_tbZ where FAMILY='%s' and ILL_ID=%d" % (ke,result)
cursor.execute(sql)
rows = cursor.fetchall()
ILL_NAME = []
for row in rows:
ILL_NAME.append(row[0]) firstResult = ILL_NAME[0]
##
print("=======================系统初诊单===================")
print("姓名:"+userinfo[0])
print("性别:"+userinfo[1])
print("年龄:"+str(userinfo[2]))
print("省份:"+userinfo[3])
print("所属区:"+userinfo[4])
print("初诊部门:"+bumen)
print("科目:"+ke)
##
print("系统智能诊断结果:"+firstResult) if(firstResult[:2]=="疑似"):
firstResult = "疑似患病" sql = "select PRESCRIPTION_1,PRESCRIPTION_2,PRESCRIPTION_3,PRESCRIPTION_4,PRESCRIPTION_5,PRESCRIPTION_6,PRESCRIPTION_7,PRESCRIPTION_8,PRESCRIPTION_9,PRESCRIPTION_10,PRESCRIPTION_11,PRESCRIPTION_12,PRESCRIPTION_13,PRESCRIPTION_14,PRESCRIPTION_15 from PRESCRIPTION where SURGERY='%s'and SURGERYCHEST='%s' and ILLNAME='%s'" % (bumen,ke,firstResult)
cursor.execute(sql)
rows = cursor.fetchall()
chufanggrace = []
for row in rows:
temp = []
temp.append(row[0])
temp.append(row[1])
temp.append(row[2])
temp.append(row[3])
temp.append(row[4])
temp.append(row[5])
temp.append(row[6])
temp.append(row[7])
temp.append(row[8])
temp.append(row[9])
temp.append(row[10])
temp.append(row[11])
temp.append(row[12])
temp.append(row[13])
temp.append(row[14])
chufanggrace.append(temp) PRESCRIPTION_sum = []
for col in range(np.shape(chufanggrace)[1]):
temp = 0
for row in range(np.shape(chufanggrace)[0]):
temp += chufanggrace[row][col]
PRESCRIPTION_sum.append(temp) b = sorted(enumerate(PRESCRIPTION_sum),key=lambda x:x[1],reverse=True)[:3]
index = []
for i in b:
index.append(i[0]) sql = "select PRESCRIPTIONINFO,HEALTH from PRESCRIPTIONINFO where DEPARTMENT='%s' and FAMILY='%s' and ILL_NAME='%s'" % (bumen,ke,firstResult)
cursor.execute(sql)
rows = cursor.fetchall()
chufanglist = []
jianyilist = []
for row in rows:
chufanglist.append(row[0])
jianyilist.append(row[1])
best_chufang = []
best_jianyi = []
for i in index:
best_chufang.append(chufanglist[i])
best_jianyi.append(jianyilist[i])
chufang_str = ""
jianyi_str = ""
for i,j in zip(best_chufang,range(len(best_chufang))):
chufang_str += "系统智能筛选优良处方"+str(j+1)+":" + i +"。"
print("系统智能筛选优良处方"+str(j+1)+":" + i) for i,j in zip(best_jianyi,range(len(best_jianyi))):
jianyi_str += "系统智能筛选优良养生建议"+str(j+1)+":" + i+"。"
print("系统智能筛选优良养生建议"+str(j+1)+":" + i) sql = "select HOSTITALNAME from DOCTORHOSTITALADRREST where PROVINCE='%s' and ADMINISTRATIVE='%s'" % (userinfo[3],userinfo[4])
cursor.execute(sql)
rows = cursor.fetchall()
yiyuan = []
for row in rows:
yiyuan.append(row[0])
for i in yiyuan:
print("系统智能匹配你所在地区附件的医院:"+i) sql = "select ADDRACTION,NAME,SUMMARY from DOCTORS where FAMILY='%s'" % (ke)
cursor.execute(sql)
rows = cursor.fetchall()
yisheng = []
for row in rows:
yisheng.append(row[0])
yisheng.append(row[1])
yisheng.append(row[2])
print("系统为你推荐全国相关出色医生所在医院信息:"+yisheng[0])
print("系统为你推荐全国相关出色医生姓名信息:"+yisheng[1])
print("系统为你推荐全国相关出色医生简介信息:"+yisheng[2])
yisheng_str = ""
yisheng_str += "医生所在医院:"+yisheng[0]
yisheng_str += "医生姓名:"+yisheng[1]
yisheng_str += "医生简介:"+yisheng[2] sql = "select CHACKPRO from CHACKPROJECT where FAMILY='%s'" % (ke)
cursor.execute(sql)
rows = cursor.fetchall()
jiancha = []
for row in rows:
jiancha.append(row[0])
print("系统建议你到相关正规医院检查以下身体指标:"+jiancha[0])
jianchax = ""
jianchax += "系统建议你到相关正规医院检查以下身体指标:"+jiancha[0] sql = "insert into zhenduanjilutable (userid,username,sex,age,province,area,bumen,ke,result,chufang,jianyi,yiyuaan,yisheng,jianchaxiang) values (%d,'%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s')" % (uid,userinfo[0],userinfo[1],userinfo[2],userinfo[3],userinfo[4],bumen,ke,firstResult,chufang_str,jianyi_str,yiyuan[0],yisheng_str,jianchax)
cursor.execute(sql)
conn.commit()
print("此次智能诊断完成,欢迎你下次继续使用:天生自然健康智能医疗系统!") print("特别提醒、注意:该系统的所有诊断只是作为参考,有必需要的用户请到相关正规医院接受相关专家医生完成检查、治疗等流程...")
print("系统建议:保持一颗善良、沉稳、宁静和广博的平常心度过每一个清晨和夜晚...")
print("祝你们每一位人都开开心心、健健康康、平平安安...阖家安康,如意吉祥......")

吴裕雄 python 人工智能——智能医疗系统后台用户注册、登录和初诊简约版代码展示的更多相关文章
- 吴裕雄 python 人工智能——智能医疗系统后台用户复诊模块简约版代码展示
#复诊 import sys import os import time import operator import cx_Oracle import numpy as np import pand ...
- 吴裕雄 PYTHON 人工智能——智能医疗系统后台智能分诊模块及系统健康养生公告简约版代码展示
#coding:utf-8 import sys import cx_Oracle import numpy as np import pandas as pd import tensorflow a ...
- 吴裕雄 python 人工智能——基于神经网络算法在智能医疗诊断中的应用探索代码简要展示
#K-NN分类 import os import sys import time import operator import cx_Oracle import numpy as np import ...
- 吴裕雄 PYTHON 人工智能——基于MASK_RCNN目标检测(5)
import os import sys import numpy as np import tensorflow as tf import matplotlib import matplotlib. ...
- 吴裕雄 PYTHON 人工智能——基于MASK_RCNN目标检测(4)
import os import sys import random import math import re import time import numpy as np import tenso ...
- 吴裕雄 python 人工智能——基于Mask_RCNN目标检测(3)
import os import sys import random import math import re import time import numpy as np import cv2 i ...
- 吴裕雄 python 人工智能——基于Mask_RCNN目标检测(2)
import os import sys import itertools import math import logging import json import re import random ...
- 吴裕雄 python 人工智能——基于Mask_RCNN目标检测(1)
import os import sys import random import math import numpy as np import skimage.io import matplotli ...
- 吴裕雄--python学习笔记:爬虫基础
一.什么是爬虫 爬虫:一段自动抓取互联网信息的程序,从互联网上抓取对于我们有价值的信息. 二.Python爬虫架构 Python 爬虫架构主要由五个部分组成,分别是调度器.URL管理器.网页下载器.网 ...
随机推荐
- Execl导入系统
文件导入功能 前台代码: Content\JS\jquery.ajaxfileupload.js<script src="~/Content/JS/jquery.ajaxfileupl ...
- 0107 spring操作数据库的3个架子
背景 数据库开发是java的核心内容之一,基础就是jdbc了: 然而直接使用jdbc,需要写大量的try-catch-finally模板代码: 管理系统使用hibernate作为orm框架比较方便,遵 ...
- 如何查看当前工程,已经安装的nuget包?
本文链接:https://blog.csdn.net/Microsoft_Mao/article/details/101161872如果想知道,当前解决方案(solution)里都安装了什么包,这里可 ...
- C++-POJ1200-Crazy Search[hash]
由于已经给出字符只有NC种,故可以把子串视为一个NC进制的数,以此构造hash函数就可以了 #include <set> #include <map> #include < ...
- mongo 改数据库名称
用命令 db.copyDatabase('old_name', 'new_name') 可以备份出一个新的数据库. 然后 use old_name 并db.dropDatabase() 即可删除旧的 ...
- NOIP做题练习(day3)
A - 军队 问题描述 给定一个有 \(n\) 个队伍的人组成的序列,第 \(i\) 个队伍 \(i\) 有 \(s[i]\)个人组成,一个 \(l\) 到 \(r\)的子序列是合法的,当且仅当\(( ...
- 阻塞队列BlockingQueue之LinkedBlokingQueue
1.简介 LinkedBlokingQueue 是链表实现的有界阻塞队列,此队列的默认和最大长度为 Integer.MAX_VALUE.此队列按照先进先出的原则对元素进行排序.ArrayList和Ar ...
- Mysql 函数定义及批量数据脚本
零.说在前面 在定义函数之前 需要先将 log_bin_trust_function_creators 值设为开启,原因如下 在主从复制的两台Mysql服务器中,slaver会从master复制数据, ...
- 揭秘jQuery-选择器
先看代码: $(“li”)只选择第一个无序列表中的一个li元素,而不会选择另一个无序列表中的li元素 <!DOCTYPE html> <html> <head> & ...
- java 中使用logback日志,并实现日志按天分类压缩保存。
以maven项目作为构建工具为例,首先引入使用logback需要的3个依赖,需要注意使用logback是需要引入slf4j-api的,因为logback是基于slf4j的 <!--logback ...