poj1958——Strange Towers of Hanoi
- There are three towers: A, B and C.
- There are n disks. The number n is constant while working the puzzle.
- All disks are different in size.
- The disks are initially stacked on tower A increasing in size from the top to the bottom.
- The goal of the puzzle is to transfer all of the disks from tower A to tower C.
- One disk at a time can be moved from the top of a tower either to an empty tower or to a tower with a larger disk on the top.
So your task is to write a program that calculates the smallest
number of disk moves necessary to move all the disks from tower A to C."
Charlie: "This is incredibly boring—everybody knows that this can be
solved using a simple recursion.I deny to code something as simple as
this!"
The teacher sighs: "Well, Charlie, let's think about something for
you to do: For you there is a fourth tower D. Calculate the smallest
number of disk moves to move all the disks from tower A to tower D using
all four towers."
Charlie looks irritated: "Urgh. . . Well, I don't know an optimal algorithm for four towers. . . "
Problem
So the real problem is that problem solving does not belong to the
things Charlie is good at. Actually, the only thing Charlie is really
good at is "sitting next to someone who can do the job". And now guess
what — exactly! It is you who is sitting next to Charlie, and he is
already glaring at you.
Luckily, you know that the following algorithm works for n <= 12:
At first k >= 1 disks on tower A are fixed and the remaining n-k
disks are moved from tower A to tower B using the algorithm for four
towers.Then the remaining k disks from tower A are moved to tower D
using the algorithm for three towers. At last the n - k disks from tower
B are moved to tower D again using the algorithm for four towers (and
thereby not moving any of the k disks already on tower D). Do this for
all k 2 ∈{1, .... , n} and find the k with the minimal number of moves.
So for n = 3 and k = 2 you would first move 1 (3-2) disk from tower A
to tower B using the algorithm for four towers (one move). Then you
would move the remaining two disks from tower A to tower D using the
algorithm for three towers (three moves). And the last step would be to
move the disk from tower B to tower D using again the algorithm for four
towers (another move). Thus the solution for n = 3 and k = 2 is 5
moves. To be sure that this really is the best solution for n = 3 you
need to check the other possible values 1 and 3 for k. (But, by the way,
5 is optimal. . . )
Input
Output
each n (1 <= n <= 12) print a single line containing the minimum
number of moves to solve the problem for four towers and n disks.
Sample Input
No input.
Sample Output
REFER TO OUTPUT.
题意:
本题大意是求n个盘子四座塔的hanoi问题的最少步数。输出n为1~12个盘子时各自的答案。
Solution:
首先考虑n个盘子3座塔的最少步数。设d[n]表示n个盘子的最少步数,则易得递推方程:d[n]=d[n-1]*2+1,意思是把前n-1个盘子从A柱移到B柱,然后把第n个盘子移到C柱,最后把前n-1个盘子移到C柱。
那么回到本题,设f[n]表示n个盘子4座塔的最少步数。则易得递推方程:f[n]=min{2*f[i]+d[n-i]}(1<=i<n),其中f[1]=1。
上式意思是,先把i个盘子在4塔模式下移到B柱,然后把n-i个盘子在3塔模式下移到D柱,最后把i个盘子在4塔模式下移到D柱。考虑所有可能的i取最小值,就得到了上述式子。
由本题其实可以推及到n个盘子m座塔的最小步数。
代码:
#include<bits/stdc++.h>
#define ll long long
#define il inline
#define debug printf("%d %s\n",__LINE__,__FUNCTION__)
using namespace std;
int d[],f[];
int main()
{
for(int i=;i<=;i++)d[i]=d[i-]*+;
memset(f,0x3f,sizeof(f));
for(int i=;i<=;i++){
if(i==)f[]=;
else for(int j=;j<i;j++)f[i]=min(f[j]*+d[i-j],f[i]);
printf("%d\n",f[i]);
}
return ;
}
poj1958——Strange Towers of Hanoi的更多相关文章
- POJ-1958 Strange Towers of Hanoi(线性动规)
Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 2677 Accepted: 17 ...
- POJ1958 Strange Towers of Hanoi [递推]
题目传送门 Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3117 Ac ...
- poj1958 strange towers of hanoi
说是递推,其实也算是个DP吧. 就是4塔的汉诺塔问题. 考虑三塔:先从a挪n-1个到b,把最大的挪到c,然后再把n-1个从b挪到c,所以是 f[i] = 2 * f[i-1] + 1; 那么4塔类似: ...
- POJ 1958 Strange Towers of Hanoi 解题报告
Strange Towers of Hanoi 大体意思是要求\(n\)盘4的的hanoi tower问题. 总所周知,\(n\)盘3塔有递推公式\(d[i]=dp[i-1]*2+1\) 令\(f[i ...
- POJ 1958 Strange Towers of Hanoi
Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3784 Accepted: 23 ...
- POJ1958:Strange Towers of Hanoi
我对状态空间的理解:https://www.cnblogs.com/AKMer/p/9622590.html 题目传送门:http://poj.org/problem?id=1958 题目要我们求四柱 ...
- [POJ1958][Strange Tower of Hanoi]
题目描述 求解 \(n\) 个盘子 \(4\) 座塔的 Hanoi 问题最少需要多少步 问题分析 考虑 \(3\) 座塔的 Hanoi 问题,记 \(f[i]\) 表示最少需要多少步, 则 \(f[i ...
- Strange Towers of Hanoi
题目链接:http://sfxb.openjudge.cn/dongtaiguihua/E/ 题目描述:4个柱子的汉诺塔,求盘子个数n从1到12时,从A移到D所需的最大次数.限制条件和三个柱子的汉诺塔 ...
- Strange Towers of Hanoi POJ - 1958(递推)
题意:就是让你求出4个塔的汉诺塔的最小移动步数,(1 <= n <= 12) 那么我们知道3个塔的汉诺塔问题的解为:d[n] = 2*d[n-1] + 1 ,可以解释为把n-1个圆盘移动到 ...
随机推荐
- spring源码-aop动态代理-5.3
一.动态代理,这是一个很强大的东西哦.研发过程中我们会常用很多业务类,但是存在一个问题.如何在不修改源码逻辑的情况下,加入自己的相关逻辑.比如异常处理,日志记录等! 二.Java动态代理的两种方式JD ...
- Connect C# to MySQL
Connect C# to MySQL using MySQL Connector/Net, Insert, Update, Select, Delete example, Backup and re ...
- [Bootstrap 源码解析]——bootstrap源码之初始化
bootstrap源码之初始化 我们先来分析normalize.less编译后的源码,我们知道normalize.css是一个专门将不同浏览器的默认css特性设置为统一效果的css库,它和reset. ...
- python5
print应用 // 输出两行 print "hahaha" print "hehehe" // 输出在同一行里 print "hahaha" ...
- Python基本编程题
问题1:仅使用 Python 基本语法,即不使用任何模块,编写 Python 程序计算下列数学表达式的结果并输出,小数点后保留3位. ...
- java excel导出(表头合并,多行表头)
@RequestMapping(value="orderExcelList2") public void orderExcelList2forJava(Order order,Ht ...
- Python登录,输入三次密码
第一段python代码,写了一天,总算不报错了,值得纪念. 基本要求: 写一个登录界面,登录三次锁定用户 1. 包含一个用户信息文件,用户名和密码 2.黑名单文件 过程: 1.先检查是否在黑名单中,如 ...
- 1.openldap介绍
1.openldap介绍 OpenLDAP是轻型目录访问协议(Lightweight Directory Access Protocol,LDAP)的自由和开源的实现,在其OpenLDAP许可证下发行 ...
- 软工实践-Alpha 冲刺 (4/10)
队名:起床一起肝活队 组长博客:博客链接 作业博客:班级博客本次作业的链接 组员情况 组员1(队长):白晨曦 过去两天完成了哪些任务 描述: 很胖,刚学,照猫画虎做了登录与注册界面. 展示GitHub ...
- Codeforces Round #335 (Div. 2) D. Lazy Student 贪心+构造
题目链接: http://codeforces.com/contest/606/problem/D D. Lazy Student time limit per test2 secondsmemory ...