题目链接

传送门

题意

求\(n\)个数中子集内所有数异或为\(0\)的子集大小之和。

思路

对于子集大小我们不好维护,因此我们可以转换思路变成求每个数的贡献。

首先我们将所有数的线性基的基底\(b\)求出来(设秩为\(r\)),然后非基地元素的贡献就是\(2^{n-r-1}\),即选择这个数然后其他所有非基底元素都可以选择或者不选择两种方法,选择非基底元素后我们再从基底里面挑出能过把它异或为\(0\)的数选出来就可以达到题目的要求。

对于基底元素\(x\),我们将非基底的\(n-r\)个元素再跑一个线性基\(other\)出来,然后用\(b\)中除去\(x\)外的剩余元素和\(other\)构成的新的线性基\(D\)来进行选择看能不能将\(x\)消掉(理由同上),如果可以消掉那么\(x\)的贡献是\(2^{n-|D|-1}\)。

注意后面枚举\(x\)要用最初始题目给的数而不能用\(b\)中的数,反例:

\(7\) \(8\) \(6\) \(8\) \(9\) \(8\)

如果直接从基里挑会直接把\(7\)和\(6\)(的第\(2,3\)个二进制位)一起挑出来,\(6\)本来还可以提供个\(0110\)的,但是往基里一放就被7搞没了。

我说的可能不太清楚,那么可以看这篇博客~

代码实现如下

#include <set>
#include <map>
#include <deque>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cassert>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <unordered_map>
using namespace std; typedef long long LL;
typedef pair<LL, LL> pLL;
typedef pair<LL, int> pLi;
typedef pair<int, LL> pil;;
typedef pair<int, int> pii;
typedef unsigned long long uLL; #define lson rt<<1
#define rson rt<<1|1
#define lowbit(x) x&(-x)
#define name2str(name) (#name)
#define bug printf("*********\n")
#define debug(x) cout<<#x"=["<<x<<"]" <<endl
#define FIN freopen("D://Code//in.txt","r",stdin)
#define IO ios::sync_with_stdio(false),cin.tie(0) const double eps = 1e-8;
const int mod = 1000000007;
const int maxn = 1e5 + 7;
const double pi = acos(-1);
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3fLL; int n, r, tot;
bool vis[maxn];
vector<LL> vec;
LL a[maxn], b[105], other[105], tmp[105]; LL qpow(LL x, int n) {
LL res = 1;
while(n) {
if(n & 1) res = res * x % mod;
x = x * x % mod;
n >>= 1;
}
return res;
} bool ins(LL x, LL base[]) {
for(int i = 63; i >= 0; --i) {
if(x & (1LL << i)) {
if(base[i]) x ^= base[i];
else {
base[i] = x;
return true;
}
}
}
return false;
} int main() {
while(~scanf("%d", &n)) {
r = tot = 0;
vec.clear();
for(int i = 0; i <= 63; ++i) b[i] = other[i] = 0;
for(int i = 1; i <= n; ++i) {
scanf("%lld", &a[i]);
vis[i] = 0;
if(ins(a[i], b)) vis[i] = 1, ++r, vec.emplace_back(a[i]);
}
if(r == n) {
printf("0\n");
continue;
}
LL ans = qpow(2, n - r - 1) * (n - r) % mod;;
for(int i = 1; i <= n; ++i) {
if(vis[i]) continue;
ins(a[i], other);
}
for(int i = 0; i < vec.size(); ++i) {
tot = 0;
for(int j = 0; j <= 63; ++j) tmp[j] = 0;
for(int j = 0; j < vec.size(); ++j) {
if(i == j) continue;
if(ins(vec[j], tmp)) ++tot;
}
for(int j = 0; j <= 63; ++j) {
if(other[j] && ins(other[j], tmp)) ++tot;
}
if(!ins(vec[i], tmp)) {
ans = (ans + qpow(2, n - tot - 1)) % mod;
}
}
printf("%lld\n", ans);
}
return 0;
}

2019年牛客多校第一场 H题XOR 线性基的更多相关文章

  1. 2019年牛客多校第一场B题Integration 数学

    2019年牛客多校第一场B题 Integration 题意 给出一个公式,求值 思路 明显的化简公式题,公式是分母连乘形式,这个时候要想到拆分,那如何拆分母呢,自然是裂项,此时有很多项裂项,我们不妨从 ...

  2. 2019年牛客多校第一场 I题Points Division 线段树+DP

    题目链接 传送门 题意 给你\(n\)个点,每个点的坐标为\((x_i,y_i)\),有两个权值\(a_i,b_i\). 现在要你将它分成\(\mathbb{A},\mathbb{B}\)两部分,使得 ...

  3. 2019年牛客多校第一场 B题 Integration 数学

    题目链接 传送门 思路 首先我们对\(\int_{0}^{\infty}\frac{1}{\prod\limits_{i=1}^{n}(a_i^2+x^2)}dx\)进行裂项相消: \[ \begin ...

  4. 2019年牛客多校第一场 C题Euclidean Distance 暴力+数学

    题目链接 传送门 题意 给你\(n\)个数\(a_i\),要你在满足下面条件下使得\(\sum\limits_{i=1}^{n}(a_i-p_i)^2\)最小(题目给的\(m\)只是为了将\(a_i\ ...

  5. 2019年牛客多校第一场 E题 ABBA DP

    题目链接 传送门 思路 首先我们知道\('A'\)在放了\(n\)个位置里面是没有约束的,\('B'\)在放了\(m\)个位置里面也是没有约束的,其他情况见下面情况讨论. \(dp[i][j]\)表示 ...

  6. Cutting Bamboos(2019年牛客多校第九场H题+二分+主席树)

    题目链接 传送门 题意 有\(n\)棵竹子,然后有\(q\)次操作,每次操作给你\(l,r,x,y\),表示对\([l,r]\)区间的竹子砍\(y\)次,每次砍伐的长度和相等(自己定砍伐的高度\(le ...

  7. 2019年牛客多校第二场 H题Second Large Rectangle

    题目链接 传送门 题意 求在\(n\times m\)的\(01\)子矩阵中找出面积第二大的内部全是\(1\)的子矩阵的面积大小. 思路 处理出每个位置往左连续有多少个\(1\),然后对每一列跑单调栈 ...

  8. 2019牛客多校第一场H XOR 线性基模板

    H XOR 题意 给出一组数,求所有满足异或和为0的子集的长度和 分析 n为1e5,所以枚举子集肯定是不可行的,这种时候我们通常要转化成求每一个数的贡献,对于一组数异或和为0.我们考虑使用线性基,对这 ...

  9. 2019年牛客多校第二场 F题Partition problem 爆搜

    题目链接 传送门 题意 总共有\(2n\)个人,任意两个人之间会有一个竞争值\(w_{ij}\),现在要你将其平分成两堆,使得\(\sum\limits_{i=1,i\in\mathbb{A}}^{n ...

随机推荐

  1. (转)Intellij IDEA 2017 debug断点调试技巧与总结详解篇

    背景:详细介绍idea的debug调试过程 Intellij IDEA 2017 debug断点调试技巧与总结详解篇

  2. STL之空间配置器allocator

    摘要 C++STL的空间配置器将内存的分配.释放,对象的构造.析构都分开执行,内存分配由alloc::allocate()负责,内存的释放由alloc::deallocate()负责:对象的构造由:: ...

  3. js精度缺失问题

    /** ** 加法函数,用来得到精确的加法结果 ** 说明:javascript的加法结果会有误差,在两个浮点数相加的时候会比较明显.这个函数返回较为精确的加法结果. ** 调用:accAdd(arg ...

  4. [转帖]NSA武器库知识整理

    NSA武器库知识整理 https://www.cnblogs.com/FrostDeng/p/7120812.html 美国国家安全局(NSA)旗下的“方程式黑客组织”(shadow brokers) ...

  5. LeetCode runtime error

    今天在写LeetCode的某一道题目时候,遇到runtime error问题,本地能过,submit后死活不能通过. 查了一下网上的一些答案,基本上都是数组.指针没有初始化造成野指针.数组索引值越界. ...

  6. Docker容器跨主机通信之:OVS+GRE

    一.概述 由于docker自身还未支持跨主机容器通信,需要借助docker网络开源解决方案 OVS OpenVSwich即开放式虚拟交换机实现,简称OVS,OVS在云计算领域应用广泛,值得我们去学习使 ...

  7. Fiddler抓包8-打断点(bpu)(转)

    转自:https://www.cnblogs.com/yoyoketang/p/6778006.html

  8. springboot使用HttpSessionListener 监听器统计当前在线人数

    概括: request.getSession(true):若存在会话则返回该会话,否则新建一个会话. request.getSession(false):若存在会话则返回该会话,否则返回NULL ht ...

  9. Spring-Cloud之Ribbon负载均衡-3

    一.负载均衡是指将负载分摊到多个执行单元上,常见的负载均衡有两种方式.一种是独立进程单元,通过负载均衡策略,将请求转发到不同的执行单元上,例如 Ngnix .另一种是将负载均衡逻辑以代码的形式封装到服 ...

  10. ASP.NET MVC 页面静态化操作的思路

    本文主要讲述了在asp.net mvc中,页面静态化的几种思路和方法.对于网站来说,生成纯html静态页面除了有利于seo外,还可以减轻网站的负载能力和提高网站性能.在asp.net mvc中,视图的 ...