题目链接

传送门

题意

求\(n\)个数中子集内所有数异或为\(0\)的子集大小之和。

思路

对于子集大小我们不好维护,因此我们可以转换思路变成求每个数的贡献。

首先我们将所有数的线性基的基底\(b\)求出来(设秩为\(r\)),然后非基地元素的贡献就是\(2^{n-r-1}\),即选择这个数然后其他所有非基底元素都可以选择或者不选择两种方法,选择非基底元素后我们再从基底里面挑出能过把它异或为\(0\)的数选出来就可以达到题目的要求。

对于基底元素\(x\),我们将非基底的\(n-r\)个元素再跑一个线性基\(other\)出来,然后用\(b\)中除去\(x\)外的剩余元素和\(other\)构成的新的线性基\(D\)来进行选择看能不能将\(x\)消掉(理由同上),如果可以消掉那么\(x\)的贡献是\(2^{n-|D|-1}\)。

注意后面枚举\(x\)要用最初始题目给的数而不能用\(b\)中的数,反例:

\(7\) \(8\) \(6\) \(8\) \(9\) \(8\)

如果直接从基里挑会直接把\(7\)和\(6\)(的第\(2,3\)个二进制位)一起挑出来,\(6\)本来还可以提供个\(0110\)的,但是往基里一放就被7搞没了。

我说的可能不太清楚,那么可以看这篇博客~

代码实现如下

#include <set>
#include <map>
#include <deque>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cassert>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <unordered_map>
using namespace std; typedef long long LL;
typedef pair<LL, LL> pLL;
typedef pair<LL, int> pLi;
typedef pair<int, LL> pil;;
typedef pair<int, int> pii;
typedef unsigned long long uLL; #define lson rt<<1
#define rson rt<<1|1
#define lowbit(x) x&(-x)
#define name2str(name) (#name)
#define bug printf("*********\n")
#define debug(x) cout<<#x"=["<<x<<"]" <<endl
#define FIN freopen("D://Code//in.txt","r",stdin)
#define IO ios::sync_with_stdio(false),cin.tie(0) const double eps = 1e-8;
const int mod = 1000000007;
const int maxn = 1e5 + 7;
const double pi = acos(-1);
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3fLL; int n, r, tot;
bool vis[maxn];
vector<LL> vec;
LL a[maxn], b[105], other[105], tmp[105]; LL qpow(LL x, int n) {
LL res = 1;
while(n) {
if(n & 1) res = res * x % mod;
x = x * x % mod;
n >>= 1;
}
return res;
} bool ins(LL x, LL base[]) {
for(int i = 63; i >= 0; --i) {
if(x & (1LL << i)) {
if(base[i]) x ^= base[i];
else {
base[i] = x;
return true;
}
}
}
return false;
} int main() {
while(~scanf("%d", &n)) {
r = tot = 0;
vec.clear();
for(int i = 0; i <= 63; ++i) b[i] = other[i] = 0;
for(int i = 1; i <= n; ++i) {
scanf("%lld", &a[i]);
vis[i] = 0;
if(ins(a[i], b)) vis[i] = 1, ++r, vec.emplace_back(a[i]);
}
if(r == n) {
printf("0\n");
continue;
}
LL ans = qpow(2, n - r - 1) * (n - r) % mod;;
for(int i = 1; i <= n; ++i) {
if(vis[i]) continue;
ins(a[i], other);
}
for(int i = 0; i < vec.size(); ++i) {
tot = 0;
for(int j = 0; j <= 63; ++j) tmp[j] = 0;
for(int j = 0; j < vec.size(); ++j) {
if(i == j) continue;
if(ins(vec[j], tmp)) ++tot;
}
for(int j = 0; j <= 63; ++j) {
if(other[j] && ins(other[j], tmp)) ++tot;
}
if(!ins(vec[i], tmp)) {
ans = (ans + qpow(2, n - tot - 1)) % mod;
}
}
printf("%lld\n", ans);
}
return 0;
}

2019年牛客多校第一场 H题XOR 线性基的更多相关文章

  1. 2019年牛客多校第一场B题Integration 数学

    2019年牛客多校第一场B题 Integration 题意 给出一个公式,求值 思路 明显的化简公式题,公式是分母连乘形式,这个时候要想到拆分,那如何拆分母呢,自然是裂项,此时有很多项裂项,我们不妨从 ...

  2. 2019年牛客多校第一场 I题Points Division 线段树+DP

    题目链接 传送门 题意 给你\(n\)个点,每个点的坐标为\((x_i,y_i)\),有两个权值\(a_i,b_i\). 现在要你将它分成\(\mathbb{A},\mathbb{B}\)两部分,使得 ...

  3. 2019年牛客多校第一场 B题 Integration 数学

    题目链接 传送门 思路 首先我们对\(\int_{0}^{\infty}\frac{1}{\prod\limits_{i=1}^{n}(a_i^2+x^2)}dx\)进行裂项相消: \[ \begin ...

  4. 2019年牛客多校第一场 C题Euclidean Distance 暴力+数学

    题目链接 传送门 题意 给你\(n\)个数\(a_i\),要你在满足下面条件下使得\(\sum\limits_{i=1}^{n}(a_i-p_i)^2\)最小(题目给的\(m\)只是为了将\(a_i\ ...

  5. 2019年牛客多校第一场 E题 ABBA DP

    题目链接 传送门 思路 首先我们知道\('A'\)在放了\(n\)个位置里面是没有约束的,\('B'\)在放了\(m\)个位置里面也是没有约束的,其他情况见下面情况讨论. \(dp[i][j]\)表示 ...

  6. Cutting Bamboos(2019年牛客多校第九场H题+二分+主席树)

    题目链接 传送门 题意 有\(n\)棵竹子,然后有\(q\)次操作,每次操作给你\(l,r,x,y\),表示对\([l,r]\)区间的竹子砍\(y\)次,每次砍伐的长度和相等(自己定砍伐的高度\(le ...

  7. 2019年牛客多校第二场 H题Second Large Rectangle

    题目链接 传送门 题意 求在\(n\times m\)的\(01\)子矩阵中找出面积第二大的内部全是\(1\)的子矩阵的面积大小. 思路 处理出每个位置往左连续有多少个\(1\),然后对每一列跑单调栈 ...

  8. 2019牛客多校第一场H XOR 线性基模板

    H XOR 题意 给出一组数,求所有满足异或和为0的子集的长度和 分析 n为1e5,所以枚举子集肯定是不可行的,这种时候我们通常要转化成求每一个数的贡献,对于一组数异或和为0.我们考虑使用线性基,对这 ...

  9. 2019年牛客多校第二场 F题Partition problem 爆搜

    题目链接 传送门 题意 总共有\(2n\)个人,任意两个人之间会有一个竞争值\(w_{ij}\),现在要你将其平分成两堆,使得\(\sum\limits_{i=1,i\in\mathbb{A}}^{n ...

随机推荐

  1. mysql新增用户无法授权!? 解决方案

    先上解决方法  :) 创建用户cat 密码 CREATE USER '; 修改user表中的注册用户cat update user set host='%' where user='cat'; 授权: ...

  2. [转帖]期待下一个十年|CIS 2019温馨回顾(附PPT下载)

    期待下一个十年|CIS 2019温馨回顾(附PPT下载) https://www.freebuf.com/fevents/222236.html shidongqi2019-12-06共26587人围 ...

  3. JavaSE面试题:类初始化和实例初始化等

    类初始化过程 1.一个类要创建实例需要先加载并初始化该类 main方法所在的类需要先加载和初始化 2.一个子类要初始化需要先初始化父类 3.一个类初始化就是执行<clinit>()方法 & ...

  4. 2019-07-02 python流程控制

    今天的知识点包括:if / while / for 为什么要有if判断:判断指的是判断事物的对错,真假,想让计算机像人一样去工作.思考,那么计算机也应该有判断事物的对错的能力,那么就要用到if判断语句 ...

  5. 第二周、ubuntu的简单介绍与使用

    一.复习第一周的大致内容:1.UNIX与Linux.ubuntu系统UNIX是1971年贝尔实验室的肯·汤普逊.丹尼斯·里奇,合作研发一款通过的操作系统,多用户.多任务.安全.稳定,收费.Linux是 ...

  6. NOI2019 退役记

    最终还是在意料之中退役了. 总的来说,这一年确实曲折坎坷,曾踏足山巅,也曾陷入低谷,二者都让我受益良多. 没有太多不甘,水平已经正常发挥,哪敢还有一丝奢求. 省选时其实已经早就做好退役的准备了,但命运 ...

  7. go 学习笔记 ----资源自动回收

    在释放局部资源时, 可以用defer管理 Go语言版本基于defer的Mutex用法 func safeRead(Mutex *mu) []byte { mu.Lock() defer mu.Unlo ...

  8. java之spring mvc之初始spring mvc

    1. mvc : mvc框架是处理 http请求和响应的框架 2. mvc 做的事情有哪些: 将 url 映射到一个java的处理方法上 将表单数据提交到 java 类中 将后台 java 类处理的结 ...

  9. wind安装Jenkins+sonar+jdk

    最近公司在用Jenkins持续集成软件,自己研究的头痛,而且还是和C#项目融合到一起的,网上看到的都是Java的,我自己配了一套和C#的,和你们分享. Jenkins是一个开源软件项目,旨在提供一个开 ...

  10. this关键字。

    一.this关键字主要有三个应用: (1)this调用本类中的属性,也就是类中的成员变量: (2)this调用本类中的其他方法: (3)this调用本类中的其他构造方法,调用时要放在构造方法的首行. ...