iris:

# -*- coding: utf-8 -*-
# K-means with TensorFlow
#----------------------------------
#
# This script shows how to do k-means with TensorFlow import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from sklearn import datasets
from scipy.spatial import cKDTree
from sklearn.decomposition import PCA
from sklearn.preprocessing import scale
from tensorflow.python.framework import ops
ops.reset_default_graph() sess = tf.Session() iris = datasets.load_iris() num_pts = len(iris.data)
num_feats = len(iris.data[0]) # Set k-means parameters
# There are 3 types of iris flowers, see if we can predict them
k=3
generations = 25 data_points = tf.Variable(iris.data)
cluster_labels = tf.Variable(tf.zeros([num_pts], dtype=tf.int64)) # Randomly choose starting points
rand_starts = np.array([iris.data[np.random.choice(len(iris.data))] for _ in range(k)]) centroids = tf.Variable(rand_starts) # In order to calculate the distance between every data point and every centroid, we
# repeat the centroids into a (num_points) by k matrix.
centroid_matrix = tf.reshape(tf.tile(centroids, [num_pts, 1]), [num_pts, k, num_feats])
# Then we reshape the data points into k (3) repeats
point_matrix = tf.reshape(tf.tile(data_points, [1, k]), [num_pts, k, num_feats])
distances = tf.reduce_sum(tf.square(point_matrix - centroid_matrix), axis=2) #Find the group it belongs to with tf.argmin()
centroid_group = tf.argmin(distances, 1) # Find the group average
def data_group_avg(group_ids, data):
# Sum each group
sum_total = tf.unsorted_segment_sum(data, group_ids, 3)
# Count each group
num_total = tf.unsorted_segment_sum(tf.ones_like(data), group_ids, 3)
# Calculate average
avg_by_group = sum_total/num_total
return(avg_by_group) means = data_group_avg(centroid_group, data_points) update = tf.group(centroids.assign(means), cluster_labels.assign(centroid_group)) init = tf.global_variables_initializer() sess.run(init) for i in range(generations):
print('Calculating gen {}, out of {}.'.format(i, generations))
_, centroid_group_count = sess.run([update, centroid_group])
group_count = []
for ix in range(k):
group_count.append(np.sum(centroid_group_count==ix))
print('Group counts: {}'.format(group_count)) [centers, assignments] = sess.run([centroids, cluster_labels]) # Find which group assignments correspond to which group labels
# First, need a most common element function
def most_common(my_list):
return(max(set(my_list), key=my_list.count)) label0 = most_common(list(assignments[0:50]))
label1 = most_common(list(assignments[50:100]))
label2 = most_common(list(assignments[100:150])) group0_count = np.sum(assignments[0:50]==label0)
group1_count = np.sum(assignments[50:100]==label1)
group2_count = np.sum(assignments[100:150]==label2) accuracy = (group0_count + group1_count + group2_count)/150. print('Accuracy: {:.2}'.format(accuracy)) # Also plot the output
# First use PCA to transform the 4-dimensional data into 2-dimensions
pca_model = PCA(n_components=2)
reduced_data = pca_model.fit_transform(iris.data)
# Transform centers
reduced_centers = pca_model.transform(centers) # Step size of mesh for plotting
h = .02 # Plot the decision boundary. For that, we will assign a color to each
x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1
y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Get k-means classifications for the grid points
xx_pt = list(xx.ravel())
yy_pt = list(yy.ravel())
xy_pts = np.array([[x,y] for x,y in zip(xx_pt, yy_pt)])
mytree = cKDTree(reduced_centers)
dist, indexes = mytree.query(xy_pts) # Put the result into a color plot
indexes = indexes.reshape(xx.shape)
plt.figure(1)
plt.clf()
plt.imshow(indexes, interpolation='nearest',
extent=(xx.min(), xx.max(), yy.min(), yy.max()),
cmap=plt.cm.Paired,
aspect='auto', origin='lower') # Plot each of the true iris data groups
symbols = ['o', '^', 'D']
label_name = ['Setosa', 'Versicolour', 'Virginica']
for i in range(3):
temp_group = reduced_data[(i*50):(50)*(i+1)]
plt.plot(temp_group[:, 0], temp_group[:, 1], symbols[i], markersize=10, label=label_name[i])
# Plot the centroids as a white X
plt.scatter(reduced_centers[:, 0], reduced_centers[:, 1],
marker='x', s=169, linewidths=3,
color='w', zorder=10)
plt.title('K-means clustering on Iris Dataset\n'
'Centroids are marked with white cross')
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.legend(loc='lower right')
plt.show()

tensorflow kmeans 聚类的更多相关文章

  1. 用 TensorFlow 实现 k-means 聚类代码解析

    k-means 是聚类中比较简单的一种.用这个例子说一下感受一下 TensorFlow 的强大功能和语法. 一. TensorFlow 的安装 按照官网上的步骤一步一步来即可,我使用的是 virtua ...

  2. K-Means 聚类算法

    K-Means 概念定义: K-Means 是一种基于距离的排他的聚类划分方法. 上面的 K-Means 描述中包含了几个概念: 聚类(Clustering):K-Means 是一种聚类分析(Clus ...

  3. 用scikit-learn学习K-Means聚类

    在K-Means聚类算法原理中,我们对K-Means的原理做了总结,本文我们就来讨论用scikit-learn来学习K-Means聚类.重点讲述如何选择合适的k值. 1. K-Means类概述 在sc ...

  4. K-Means聚类算法原理

    K-Means算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛.K-Means算法有大量的变体,本文就从最传统的K-Means算法讲起,在其基础上讲述K-Means的优化变体 ...

  5. K-means聚类算法

    聚类分析(英语:Cluster analysis,亦称为群集分析) K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般.最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中, ...

  6. k-means聚类算法python实现

    K-means聚类算法 算法优缺点: 优点:容易实现缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢使用数据类型:数值型数据 算法思想 k-means算法实际上就是通过计算不同样本间的距离来判断他 ...

  7. K-Means 聚类算法原理分析与代码实现

    前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经 ...

  8. Kmeans聚类算法原理与实现

    Kmeans聚类算法 1 Kmeans聚类算法的基本原理 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一.K-means算法的基本思想是:以空间中k个点为中心进行聚类,对 ...

  9. 机器学习六--K-means聚类算法

    机器学习六--K-means聚类算法 想想常见的分类算法有决策树.Logistic回归.SVM.贝叶斯等.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别 ...

随机推荐

  1. MYSQL 的optimize怎么用

    当对表有大量的增删改操作时,需要用optimize对表进行优化.可以减少空间与提高I/O性能,命令optimize table tablename;假如有foo表且存储引擎为MyISAM. mysql ...

  2. 国内云引擎平台概览——新浪SAE,阿里ACE,百度BCE

    新浪SAE 平时大家的測试server都是执行在自己的PC上面,用Tomcat或者IIS搭建的本机server. 事实上新浪云平台SinaAppEngine也是挺好用的. 今天总结一下我使用过程中的一 ...

  3. docker创建私有仓库及存储image

    Docker官方的Docker hub尽管提供了有非常多image,也基本上包括了我们须要使用的,可是其訪问起来比較慢.假设自己要定制image.多台server之间的共享使用此image非常不方便. ...

  4. oracle select into相关

    自定义参数输出: declare v_test integer :=0 ;beginselect count(*) into v_test  from tf_estate_card t ;dbms_o ...

  5. Sahi ---实现 Web 自动化测试

    参考网址:http://sahipro.com/docs/sahi-apis/index.html Sahi 是 Tyto Software 旗下的一个基于业务的开源 Web 应用自动化测试工具.Sa ...

  6. g2o 初始化

    typedef g2o::BlockSolver< g2o::BlockSolverTraits<,> > Block; // pose 维度为 6, landmark 维度为 ...

  7. typedef struct与struct定义结构体

    今天在定义结构体的时候发现typedef struct与struct定义结构体有一些不同之处: 结构也是一种数据类型, 能够使用结构变量, 因此,  象其他 类型的变量一样, 在使用结构变量时要先对其 ...

  8. gitlab多人协同工作

    gitlab多人协同工作 本文为亨利向<Git权威指南>的作者蒋鑫老师的答疑邮件写成. 这里特别感谢蒋鑫老师对我询问gitlab的协同工作流程问题的详细解答. 蒋鑫老师的细致专业的解答让我 ...

  9. WPF DataGrid 获取当前行某列值

    [0]是指当前行第1列的单元格位置 注意:DataRowView要求必须引用System.Data命名空间 方法一: DataRowView mySelectedElement = (DataRowV ...

  10. python 基础 4.3 高阶函数下和匿名函数

    一 .匿名函数 顾名思议就是没有名字的函数,那为什么要设立匿名函数,他有什么作用呢?lambda 函数就是一种快速定义单行的最小函数,可以用在任何需要函数的地方.   常规版: def fun(x,y ...