Description

 Games Are Important 

One of the primary hobbies (and research topics!) among Computing Science students at the University of Alberta is, of course, the playing of games. People here like playing games very much, but the problem is that the games may get solved completely--as happened
in the case of Checkers. Generalization of games is the only hope, but worries that they will be solved linger still. Here is an example of a generalization of a two player game which can also be solved.

Suppose we have a directed acyclic graph with some number of stones at each node. Two players take turns moving a stone from any node to one of its neighbours, following a directed edge. The player that cannot move any stone loses the game. Note that multiple
stones may occupy the same node at any given time.

Input

The input consists of a number of test cases. Each test case begins with a line containing two integers
n and m, the number of nodes and the number of edges respectively. (
1n1000,
0m10000).
Then, m lines follow, each containing two integers
a and b: the starting and ending node of the edge (nodes are labeled from 0 to
n - 1).

The test case is terminated by n more integers
s0,..., sn-1 (one per line), where
si represents the number of stones that are initially placed on node
i ( 0si1000).

Each test case is followed by a blank line, and input is terminated by a line containing `0 0' which should not be processed.

Output

For each test case output a single line with either the word ` First' if the first player will win, or the word `
Second' if the second player will win (assuming optimal play by both sides).

Sample Input

4 3
0 1
1 2
2 3
1
0
0
0 7 7
0 1
0 2
0 4
2 3
4 5
5 6
4 3
1
0
1
0
1
0
0 0 0

Sample Output

First
Second
有一个DAG(有向五环图)。每一个结点上都有一些石子。 两个玩家轮流把一个石头从一个结点沿着从此点出发的随意一条有向边移向相邻结点。不能移动的玩家算输掉游戏。注
意,在同一个时刻一个节点上能够有随意的石头。 思路:注意到,各个石头的状态的是全然独立的,所以这个游戏能够看做每个石头所形成的游戏的和。 对于每个石头,它的状态x就是所在的结点编号,假设此结点已经没有出发的边,则既是先手必败的状态,否则兴许状态就是相邻结点的SG值集合。 须要注意的是,对于在同一个结点来说。其上的石头假设个数为奇数。则当成1个石头就可以。假设为偶数,能够忽略不计。这是由异或运算的性质决定的。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
const int maxn = 10005; int n, m, sg[maxn];
vector<int> g[maxn]; int SG(int u) {
if (sg[u] != -1)
return sg[u]; int vis[maxn];
memset(vis, 0, sizeof(vis));
for (int i = 0; i < g[u].size(); i++) {
int tmp = SG(g[u][i]);
vis[tmp] = 1;
} for (int j = 0; ; j++)
if (!vis[j]) {
sg[u] = j;
break;
}
return sg[u];
} int main() {
int u, v;
while (scanf("%d%d", &n, &m) != EOF && n+m) {
memset(sg, -1, sizeof(sg));
for (int i = 0; i < maxn; i++)
g[i].clear(); for (int i = 0; i < m; i++) {
scanf("%d%d", &u, &v);
g[u].push_back(v);
} for (int i = 0; i < n; i++)
sg[i] = SG(i); int ans = 0, u;
for (int i = 0; i < n; i++) {
scanf("%d", &u);
if (u & 1)
ans ^= sg[i];
}
printf("%s\n", ans ? "First": "Second");
}
return 0;
}

UVA - 11927 Games Are Important (SG)的更多相关文章

  1. UVA 11927 - Games Are Important(sg函数)

    UVA 11927 - Games Are Important option=com_onlinejudge&Itemid=8&page=show_problem&catego ...

  2. UVA 1482 - Playing With Stones(SG打表规律)

    UVA 1482 - Playing With Stones 题目链接 题意:给定n堆石头,每次选一堆取至少一个.不超过一半的石子,最后不能取的输,问是否先手必胜 思路:数值非常大.无法直接递推sg函 ...

  3. UVA 10561 - Treblecross(博弈SG函数)

    UVA 10561 - Treblecross 题目链接 题意:给定一个串,上面有'X'和'.',能够在'.'的位置放X.谁先放出3个'X'就赢了,求先手必胜的策略 思路:SG函数,每一个串要是上面有 ...

  4. Inside NGINX: How We Designed for Performance & Scale

    NGINX leads the pack in web performance, and it’s all due to the way the software is designed. Where ...

  5. UNDERSTANDING THE GAUSSIAN DISTRIBUTION

    UNDERSTANDING THE GAUSSIAN DISTRIBUTION Randomness is so present in our reality that we are used to ...

  6. UVA 11534 - Say Goodbye to Tic-Tac-Toe(博弈sg函数)

    UVA 11534 - Say Goodbye to Tic-Tac-Toe 题目链接 题意:给定一个序列,轮流放XO,要求不能有连续的XX或OO.最后一个放的人赢.问谁赢 思路:sg函数.每一段.. ...

  7. hdoj 1729 Stone Games(SG函数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1729 看了题目感觉像Nim,但是有范围限制,有点不知道SG函数该怎么写 看了题解,最后才明白该怎么去理 ...

  8. UVa 10561 (SG函数 递推) Treblecross

    如果已经有三个相邻的X,则先手已经输了. 如果有两个相邻的X或者两个X相隔一个.,那么先手一定胜. 除去上面两种情况,每个X周围两个格子不能再放X了,因为放完之后,对手下一轮再放一个就输了. 最后当“ ...

  9. uva 1378 A Funny Stone Game (博弈-SG)

    题目链接:http://vjudge.net/problem/viewProblem.action?id=41555 把第i堆的每个石子看出一堆个数为n-i的石子,转换为组合游戏 #include & ...

随机推荐

  1. PHP 数值处理的几种常用的方法

    一.直接取整,舍弃小数,保留整数:intval(): intval(9.21); /*结果是9*/ intval(9.89); /*结果是9*/ intval(string); /*如果里面是字符串, ...

  2. 前台提交数据(表单数据、Json数据及上传文件)的类型

    MIME (Multipurpose Internet Mail Extensions) 是描述内容类型的互联网标准.Clients use this content type or media ty ...

  3. 在RecyclerView列表滚动的时候显示或者隐藏Toolbar

    先看一下效果: 本文将讲解如何实现类似于Google+应用中,当列表滚动的时候,ToolBar(以及悬浮操作按钮)的显示与隐藏(向下滚动隐藏,向上滚动显示),这种效果在Material Design ...

  4. Android属性动画:插值器与估值器

    声明:本篇文章部分内容来自<Android开发艺术探索>. 我们都知道对于属性动画可以对某个属性做动画,而 插值器(TimeInterpolator)和 估值器(TypeEvaluator ...

  5. android:项目迁移error:Please change caller according to com.intellij.....

    迁移到Android Studio中的项目,在运行时有时会在Event Log中报这种错: Please change caller according to com.intellij.openapi ...

  6. 3org.springframework.beans.factory.BeanDefinitionStoreException异常

    1.下面是我遇到的异常信息: 2017-03-25 18:01:11,322 [localhost-startStop-1][org.springframework.web.context.Conte ...

  7. 2 python全局变量如何指定(是在模块内,还是函数内)

    示例代码1 xx=1 def __recurrence(): # #前面的0到sentence_length-1的下标,存储的就是最原始的词向量,但是我们也要将其转变为Tensor global xx ...

  8. javascript promise编程

    在loop中使用promise: https://stackoverflow.com/questions/17217736/while-loop-with-promises

  9. CompletionService和ExecutorCompletionService

    CompletionService用于提交一组Callable任务,其take方法返回已完成的一个Callable任务对应的Future对象.   如果你向Executor提交了一个批处理任务,并且希 ...

  10. 《C++ Primer Plus》读书笔记之八—对象和类

    第十章 对象和类   1.面向对象编程(OOP)的特性:抽象.封装和数据隐藏.多态.继承.代码的重用性. 2.指定基本类型完成了3项工作:①决定数据对象需要的内存数量.②决定如何解释内存中的位(lon ...