大数据小白系列——MR(1)
一部编程发展史就是一部程序员偷懒史,MapReduce(下称MR)同样是程序员们用来偷懒的工具。
来了一份大数据,我们写了一个程序准备分析它,需要怎么做?
老式的处理方法不行,数据量太大时,所需的时间无法忍受,所以,必须并行计算。好比1000块砖,1个人搬需要1小时,10个人同时搬,只需要6分钟。
不过进行并行计算,面临几个细思头大问题:
- 如何切分数据
- 如何处理部分任务失败
- 如何对多路计算的结果进行汇总

不过不用担心,世界就是这样的,少部分人发明创造工具,大部分人使用工具。总有聪明人在合适的时候出来解决问题。
Google在2004年出了个paper,《MapReduce: Simplifed Data Processing on Large Clusters》,提出来一种针对大数据的并行处理模型、并基于此理论做了一个计算框架。
所以,你可以说MR是一种计算模型、也可以叫它一个计算框架。广义的MR甚至还包括一套资源管理(JobTracker、TaskTracker),后面这个我们不讲,因为,过,时,了。
Q 框架是什么?
A 就是套路。内部会帮你处理那些让你头大的问题。
作为小白系列,我们先来看看MR简单的流程图:

为方便理解,来一个WorkCount示例(WordCount就好比大数据的HelloWorld,总要来一个的)。假设我们有一个文件包含内容:
Live for nothing, die for something
统计每一个单词出现的次数:

Q Splitting是怎么做的,分成几份?
A 框架决定(通常是文件有多少个数据块,就分成几份,数据块不懂的回去看HDFS系列)。
Q k1,v1是什么?
A 一般来说,k1是行号(在WordCount示例中用不到),v1是文件的某一行。本例只是概念示例,不用纠结。
Q Mapping产生的结果存储在哪里?
A 所在机器的本地文件系统,非HDFS,以避免产生多余的副本(HDFS默认多个副本)。
Q Shuffling是做什么的?
A 负责将Mapping产生的中间结果发给Reducer,哪些数据发个哪个Reducer,有框架决定。
Q Reducer有几个,运行在哪些机器上?
A 框架决定。
Q 哪些是需要程序员进行代码实现的?
A Mapping及Reducing,即图中两个红框部分。
好了,这期就先说到这,下期将稍微深入了解一下MR中的Shuffling、Sorting等概念。Cheers!
—END—
欢迎关注“程序员杂书馆”公众号,领取大数据经典纸质书。

大数据小白系列——MR(1)的更多相关文章
- 大数据小白系列——HDFS(4)
这里是大数据小白系列,这是本系列的第四篇,来看一个真实世界Hadoop集群的规模,以及我们为什么需要Hadoop Federation. 首先,我们先要来个直观的印象,这是你以为的Hadoop集群: ...
- 大数据小白系列——HDFS(3)
这里是大数据小白系列,这是本系列的第三篇,介绍HDFS中NameNode选举,JournalNode等概念. 上一期我们说到了为解决NameNode(下称NN)单点失败问题,HDFS中使用了双NN的机 ...
- 大数据小白系列——HDFS(2)
这里是大数据小白系列,这是本系列的第二篇,介绍一下HDFS中SecondaryNameNode.单点失败(SPOF).以及高可用(HA)等概念. 上一篇我们说到了大数据.分布式存储,以及HDFS中的一 ...
- 大数据小白系列——HDFS(1)
[注1:结尾有大福利!] [注2:想写一个大数据小白系列,介绍大数据生态系统中的主要成员,理解其原理,明白其用途,万一有用呢,对不对.] 大数据是什么?抛开那些高大上但笼统的说法,其实大数据说的是两件 ...
- 大数据小白系列 —— MapReduce流程的深入说明
上一期我们介绍了MR的基本流程与概念,本期稍微深入了解一下这个流程,尤其是比较重要但相对较少被提及的Shuffling过程. Mapping 上期我们说过,每一个mapper进程接收并处理一块数据,这 ...
- 大数据学习系列之五 ----- Hive整合HBase图文详解
引言 在上一篇 大数据学习系列之四 ----- Hadoop+Hive环境搭建图文详解(单机) 和之前的大数据学习系列之二 ----- HBase环境搭建(单机) 中成功搭建了Hive和HBase的环 ...
- 大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 图文详解
引言 在之前的大数据学习系列中,搭建了Hadoop+Spark+HBase+Hive 环境以及一些测试.其实要说的话,我开始学习大数据的时候,搭建的就是集群,并不是单机模式和伪分布式.至于为什么先写单 ...
- 大数据学习系列之四 ----- Hadoop+Hive环境搭建图文详解(单机)
引言 在大数据学习系列之一 ----- Hadoop环境搭建(单机) 成功的搭建了Hadoop的环境,在大数据学习系列之二 ----- HBase环境搭建(单机)成功搭建了HBase的环境以及相关使用 ...
- 大数据学习系列之六 ----- Hadoop+Spark环境搭建
引言 在上一篇中 大数据学习系列之五 ----- Hive整合HBase图文详解 : http://www.panchengming.com/2017/12/18/pancm62/ 中使用Hive整合 ...
随机推荐
- 【Linux】基本命令操作
一.用户操作 1.新增用户 useradd -u 1101 -g zte -d /home/xhs -m xhs --其中,1101,为用户ID,尽量使用500以上的 zte,为用户组 /home/x ...
- 树形dp 入门
今天学了树形dp,发现树形dp就是入门难一些,于是好心的我便立志要发一篇树形dp入门的博客了. 树形dp的概念什么的,相信大家都已经明白,这里就不再多说.直接上例题. 一.常规树形DP P1352 没 ...
- dbcp连接池出现的问题java.lang.AbstractMethodError: com.mysql.jdbc.Connection.isValid(I)Z
解决方案:mysql-connector 版本为 5.0.4 ,那么对应的 dbcp 和 pool 版本应该为 1.4 和 1.6 . 5.0.4 不应该使用 2.0 及以上版本的 dbcp 和 ...
- Java 把一个文本文档的内容复制到另一个文本文档
src.txt放在工程目录下,dest.txt可创建,也可不创建.一旦运行程序,如果dest.txt不存在,将自行创建这个文本文档,再将src.txt中的内容复制到dest.txt import ja ...
- Centos6.10部署TeamViewer
1.在官网下载支持Linux系统的包,建议下载TeamViewer12的包,官网URL:https://www.teamviewer.com/cn/download/linux/ 2.将下载的软件包导 ...
- linux 将自己的服务添加到系统service服务
前言 我们在linux上要启动一个程序得时候, 往往都是要写一堆路径, 找到要启动得服务程序, 再用 ./*** 启动服务. 那么我们有没有快速启动方法吗, 答案是肯定得 service 介绍 官方介 ...
- Html页面添加百度地图
1.进入百度地图开放平台 http://lbsyun.baidu.com/ 2.进入右上角的 “API控制台” 在这里创建应用 并 获取密钥 3.进入 如下地址 创建地图 http://api.m ...
- 爬虫基础以及 re,BeatifulSoup,requests模块使用
爬虫基础以及BeatifulSoup模块使用 爬虫的定义:向网站发起请求,获取资源后分析并提取有用数据的程序 爬虫的流程 发送请求 ---> request 获取响应内容 ---> res ...
- Python自定义-分页器
Python自定义-分页器 分页功能在每个网站都是必要的,对于分页来说,其实就是根据用户的输入计算出应该在数据库表中的起始位置. 1.设定每页显示数据条数 2.用户输入页码(第一页.第二页...) 3 ...
- excel vba获取拼音
Function PinYin2(Hz As String) Dim PinMa As String Dim MyPinMa As Variant Dim Temp As Integer, i As ...