CS184.1X 计算机图形学导论(第三讲)
第一单元(介绍关于变换的数学知识)
:基本二维变换
模型坐标系,世界坐标系
1.缩放
Scale(规模,比例)
Sx表示在x方向上放大的倍数,Sy表示在y方向上放大的倍数,因此X坐标乘以Sx,Y坐标乘以Sy
缩放的你操作就是用x坐标和Y坐标分别乘以Sx和Sy的倒数。因此,如果放大了2倍,则其逆操作就是放大1/2倍,就是Sx和Sy的倒数
缩放矩阵是一个对角矩阵,将坐标乘以对应的缩放系数即可。

2.错切
Y坐标不发生变化,因此矩阵的第二行仍然是[0 1],乘起来仍然是y
x的值等于之前的x的值加上a乘以y坐标的值,x`=x+ay
这里为什么乘以a,因为这里是假设单位长度1,错切的变化量依赖于y坐标的值
错切矩阵为
,错切的逆矩阵就是把a变成-a,错切公式不变。
3.旋转
该矩阵使得x方向和y方向上的变换叠加,相当于先在x方向上旋转再在y方向上旋转
二维的旋转变换,先在x轴上或先在y轴上可以交换顺序,但是三维不可以
因为数学表示在电脑上书写比较麻烦,故在纸上写下再拍照上传,得出旋转之后坐标的矩阵表示

课后测试题:

错误原因:在百度的时候没有加度,所以造成了错误,不用像答案把θ进行变换。
:组合变换
矩阵变换顺序不可交换!
组合变换矩阵的逆矩阵:最后一个变换的需要最先逆


对于旋转矩阵来说, R(A+B)=R(A)R(B),所以R(θ)=R(1)R(2)...R(179)R(180)=R(1+2+...+1
80)=R(((1+180)*180)/2)=R(16290),需要将旋转角再模360 (因为旋转x 度等价于旋转 x+360度)。 因此, 这里的旋转角就是 16290 mod 360=90 度
:三维旋转
旋转矩阵是正交的,R的转置乘以R等于单位矩阵E
三维绕哪个轴旋转,那个轴的坐标不变,即可得出结论(跟二维推导过程一样)
1>绕Z轴
2>绕X轴
3>绕Y轴
(注意这里的形式稍有不同!!)三个矩阵均正交,乘以对应的转置矩阵为单位矩阵
点乘和叉乘的区别:
1.
点乘是一个数,公式:a . b = |a| * |b| * cosθ
点乘又叫向量的内积、数量积,是一个向量和它在另一个向量上的投影的长度的乘积;
点乘反映着两个向量的“相似度”,两个向量越“相似”,它们的点乘越大。
2.
a*b = |a| * |b| * sinθ ,结果是一个向量,遵循右手法则
旋转可以写成一般矩阵的形式,即某个矩阵M乘以b,下边是一般轴角表示的旋转公式,推导过程比较复杂
罗德里格斯旋转公式:(记住)???这里不大懂

反向旋转轴实际上将绕 a⃗ 的逆时针旋转改变为绕a⃗ 的顺时针旋转。因此,绕−a⃗ 的逆时针旋转和绕a⃗ 的顺时针旋转等效。
CS184.1X 计算机图形学导论(第三讲)的更多相关文章
- CS184.1X 计算机图形学导论(第五讲)
一.观察:正交投影 1.特性:保持平行线在投影后仍然是平行的 2.一个长方体,对处在只有深度不同的位置上的同一物体来说,它的大小不会改变. 3.透视投影:平行线在远处会相交(例如铁轨) 4.glOrt ...
- CS184.1X 计算机图形学导论 罗德里格斯公式推导
罗德里格斯公式推导 图1(复制自wiki) 按照教程里,以图1为例子,设k为旋转轴,v为原始向量. v以k为旋转轴旋转,旋转角度为θ,旋转后的向量为vrot. 首先我们对v进行分解,分解成一个平行于k ...
- CS184.1X 计算机图形学导论L3V2和L3V3(部分)
组合变换 连接矩阵的优点是可以使用这些矩阵单独操作. 多个变换依然是一个矩阵. 连接矩阵不可交换,因为矩阵乘法不具有交换性. X3=RX2 X2=SX1 X3=R(SX1)=(RS)X1 X3≠SRX ...
- CS184.1X 计算机图形学导论 第3讲L3V1
二维空间的变换 L3V1这一课主要讲了二维空间的变换,包括平移.错切和旋转. 缩放 缩放矩阵 使用矩阵的乘法来完成缩放 缩放矩阵是一个对角矩阵,对角线上的值对应缩放倍数 错切(shear) 错切可以将 ...
- CS184.1X 计算机图形学导论 作业0
1.框架下载 在网站上下载了VS2012版本的作业0的框架,由于我的电脑上的VS是2017版的,根据提示安装好C++的版本,并框架的解决方案 重定解决方案目标为2017版本. 点击运行,可以出来界面. ...
- CS184.1X 计算机图形学导论 HomeWork1
最容易填写的函数就是left.输入为旋转的角度,当前的eye与up这两个三维向量 void Transform::left(float degrees, vec3& eye, vec3& ...
- CS184.1X 计算机图形学导论(第四讲)
一.齐次变换 1.平移变换 变换矩阵不能包含X,Y,Z等坐标变量 如果x坐标向右平移了5个单位长度,则x~=x+5.在变换矩阵中表示的时候添加一个w坐标变量.通过加入一个w坐标,可以实现平移变换 1& ...
- 分享:计算机图形学期末作业!!利用WebGL的第三方库three.js写一个简单的网页版“我的世界小游戏”
这几天一直在忙着期末考试,所以一直没有更新我的博客,今天刚把我的期末作业完成了,心情澎湃,所以晚上不管怎么样,我也要写一篇博客纪念一下我上课都没有听,还是通过强大的度娘完成了我的作业的经历.(当然作业 ...
- 计算机图形学 - 图形变换(opengl版)
作业题目: 图形变换:实现一个图形绕任意直线旋转的程序. 要求:把一个三维图形绕任意一条直线旋转,需要有初始图形,和旋转后的图形,最好也可以实时控制旋转. 最少要做出绕z轴旋转. 原理:http:// ...
随机推荐
- c++11 指针空值
1. 引入nullptr的必要性: 典型的指针初始化是将其指向一个空的位置.比如: int* my_ptr = 0; int* my_ptr = NULL; 一般情况下,NULL是一个宏定义. #un ...
- POJ 2449 Remmarguts' Date ( 第 k 短路 && A*算法 )
题意 : 给出一个有向图.求起点 s 到终点 t 的第 k 短路.不存在则输出 -1 #include<stdio.h> #include<string.h> #include ...
- 深圳市利汇电子商务科技有限公司2019年java面试笔试题
垃圾公司,建议不要去,写的地址去了发现是两个公司公用一个办公场地,还没有公司的招牌,去了交简历给前台然后就是 填一份求职申请,一份笔试题如下,然后就等待,先是人事的一个小妹妹面试,问一些个人问题,为什 ...
- 【转】通过Nginx部署Django
https://www.cnblogs.com/frchen/p/5709533.html Django的部署可以有很多方式,采用nginx+uwsgi的方式是其中比较常见的一种方式. 在这种方式中, ...
- (转)Servlet 3.0/3.1 中的异步处理学习
转:https://www.cnblogs.com/davenkin/p/async-servlet.html 在Servlet 3.0之前,Servlet采用Thread-Per-Request的方 ...
- CAD到ArcGIS相关操作
1.Ctrl+N(新建图形)→复制原数据,粘贴到原坐标 2.将CAD数据转为矢量数据方法众多,此处将提供三种方法: 方法一:CAD转地理数据库注记 在[ArcToolBox]窗口中,双击[转换工具]→ ...
- Zsh vs. Bash不完全对比解析,zsh是一种更强大的被成为“终极”的Shell
https://www.zhihu.com/question/21418449 Mort | Zsh vs. Bash:不完全对比解析(1) 2014-10-07 bdpqlxz Zsh和B ...
- IDEA 服务启动报:No buffer space available (maximum connections reached): connect的解决方案。
错误提示:严重: Error starting endpointjava.io.IOException: Unable to establish loopback connectionat sun.n ...
- SQLiteDatabase 数据库使用
0 SQLiteDatabases数据库特点 一种切入式关系型数据库,支持事务,可使用SQL语言,独立,无需服务.程序内通过类名可访问数据库,程序外不可以访问. SQLiteDatabases数据库使 ...
- DataScope v1.0 多功能串口虚拟示波器使用介绍
DataScope v1.0 特性 1.无需安装,启动即用;2.支持同时刷新多达10个通道的单精度浮点型数据;3.支持多种格式的通道数据导入.导出及回放;4.支持全屏浏览;5.支持图表数据统计.测量及 ...