题目链接:http://poj.org/problem?id=1050

发现这个题没有写过题解,现在补上吧,思路挺经典的。

思路就是枚举所有的连续的连续的行,比如1 2 3 4 12 23 34 45 123 234 345...然后把这些行对应列相加缩成一行,之后就是求最大子序列和了。

     /*
━━━━━┒ギリギリ♂ eye!
┓┏┓┏┓┃キリキリ♂ mind!
┛┗┛┗┛┃\○/
┓┏┓┏┓┃ /
┛┗┛┗┛┃ノ)
┓┏┓┏┓┃
┛┗┛┗┛┃
┓┏┓┏┓┃
┛┗┛┗┛┃
┓┏┓┏┓┃
┛┗┛┗┛┃
┓┏┓┏┓┃
┃┃┃┃┃┃
┻┻┻┻┻┻
*/
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <cstring>
#include <climits>
#include <complex>
#include <fstream>
#include <cassert>
#include <cstdio>
#include <bitset>
#include <vector>
#include <deque>
#include <queue>
#include <stack>
#include <ctime>
#include <set>
#include <map>
#include <cmath>
using namespace std;
#define fr first
#define sc second
#define cl clear
#define BUG puts("here!!!")
#define W(a) while(a--)
#define pb(a) push_back(a)
#define Rint(a) scanf("%d", &a)
#define Rll(a) scanf("%lld", &a)
#define Rs(a) scanf("%s", a)
#define Cin(a) cin >> a
#define FRead() freopen("in", "r", stdin)
#define FWrite() freopen("out", "w", stdout)
#define Rep(i, len) for(int i = 0; i < (len); i++)
#define For(i, a, len) for(int i = (a); i < (len); i++)
#define Cls(a) memset((a), 0, sizeof(a))
#define Clr(a, x) memset((a), (x), sizeof(a))
#define Full(a) memset((a), 0x7f7f7f, sizeof(a))
#define lrt rt << 1
#define rrt rt << 1 | 1
#define pi 3.14159265359
#define RT return
#define lowbit(x) x & (-x)
#define onenum(x) __builtin_popcount(x)
typedef long long LL;
typedef long double LD;
typedef unsigned long long ULL;
typedef pair<int, int> pii;
typedef pair<string, int> psi;
typedef pair<LL, LL> pll;
typedef map<string, int> msi;
typedef vector<int> vi;
typedef vector<LL> vl;
typedef vector<vl> vvl;
typedef vector<bool> vb; const int maxn = ;
int G[maxn][maxn];
int n;
int dp[maxn]; int lss() {
int tmp = -0x7f7f7f, ret = -0x7f7f7f;
For(i, , n+) {
if(tmp > ) tmp += dp[i];
else tmp = dp[i];
ret = max(tmp, ret);
}
return ret;
} int main() {
// FRead();
while(~Rint(n)) {
For(i, , n+) For(j, , n+) Rint(G[i][j]);
int ret = ;
For(i, , n+) {
Cls(dp);
For(j, i, n+) {
For(k, , n+) dp[k] += G[j][k];
ret = max(ret, lss());
}
}
printf("%d\n", ret);
}
RT ;
}

[POJ1050]To the Max(最大子矩阵,DP)的更多相关文章

  1. POJ1050 To the Max 最大子矩阵

    POJ1050 给定一个矩阵,求和最大的子矩阵. 将每一列的值进行累加,枚举起始行和结束行,然后就可以线性优化了 复杂度O(n^3) #include<cstdio> #include&l ...

  2. poj1050 To the Max(降维dp)

    To the Max Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 49351   Accepted: 26142 Desc ...

  3. [POJ1050]To the Max

    [POJ1050]To the Max 试题描述 Given a two-dimensional array of positive and negative integers, a sub-rect ...

  4. HDU 1003 Max Sum --- 经典DP

    HDU 1003    相关链接   HDU 1231题解 题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置 解题思路:经典DP,可以定义 ...

  5. (线性dp 最大子段和 最大子矩阵和)POJ1050 To the Max

    To the Max Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 54338   Accepted: 28752 Desc ...

  6. poj 1050 To the Max(最大子矩阵之和,基础DP题)

    To the Max Time Limit: 1000MSMemory Limit: 10000K Total Submissions: 38573Accepted: 20350 Descriptio ...

  7. poj 1050 To the Max 最大子矩阵和 经典dp

    To the Max   Description Given a two-dimensional array of positive and negative integers, a sub-rect ...

  8. BZOJ 1084: [SCOI2005]最大子矩阵 DP

    1084: [SCOI2005]最大子矩阵 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1084 Description 这里有一个n* ...

  9. ZOJ1074 (最大和子矩阵 DP)

    F - 最大子矩阵和 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u   Descri ...

随机推荐

  1. thinkphp中SQLSTATE[42S02]: Base table or view not found: 1146 Table错误解决方法

    随手记录下今天在thinkphp3.2.3中遇到的错误SQLSTATE[42S02]: Base table or view not found: 1146 Table 'test.file_info ...

  2. window.showModalDialog的传值和返回值

    window.showModalDialog(URL,dialogArgments,features) 打开一个新窗口 URL为要将打开的网页地址. dialogArgments为设定好传递给新视窗网 ...

  3. sublime 3 注册码

    Sublime_Text_Build_3080_x64_Setup.e... 下载地址: http://download.csdn.net/detail/hyz301/8529945 注册码 Subl ...

  4. Redis杂记

    参考资料: Redis 教程 | 菜鸟教程 : http://www.runoob.com/redis/redis-tutorial.html Redis快速入门 :http://www.yiibai ...

  5. fiddler 新发现

    就一句话,记录一下 urlreplace baidu.com taobao.com //Fiddler2\Scripts\SampleRules.js 这里发现的 case "urlrepl ...

  6. URAL 1517 Freedom of Choice(后缀数组,最长公共字串)

    题目 输出最长公共字串 #define maxn 200010 int wa[maxn],wb[maxn],wv[maxn],ws[maxn]; int cmp(int *r,int a,int b, ...

  7. 【hadoop】mapreduce原理总结

    看了两天的各种博客,终于把MapReduce的原理理解了个大概.花了1个小时画了个流程图.大家看看,有不对的地方欢迎指正. 关键步骤: Map, Reduce就不多说了.记录一下我看了很久的部分: 1 ...

  8. 2015年4月 非常干货之Python资源大全

    [非常干货之Python资源大全]Python是一门美妙的语言,简单易用,容易提升.它是一门主流语言,却没有其它专业语言的弊病,从游戏,ML,GUI到科学和数学有着巨量的函数库. 直击现场 <H ...

  9. PHP5.4最新特性

     PHP5.4最新特性   官网:ChangeLog-5.php#5.4.0 原文Oracle:LAMP 体系有了新的竞争,但此版本中的特性使 PHP 再次挑战极限. 稍微做了修改.: 概述总结:1. ...

  10. JavaScript基于对象编程

    js面向对象特征介绍 javascript是一种面向(基于)对象的动态脚本语言,是一种基于对象(Object)和事件驱动(EventDirven)并具有安全性能的脚本语言.它具有面向对象语言所特有的各 ...