洛谷 P1313 【计算系数】
这道题只要肯动手还是挺水的
进入正题
我们先枚举几个找找规律(这里先省略x,y):
k = 0 :\(1\)
k = 1 : \(a\) \(b\)
k = 2 : \(a^{2}\) \(2ab\) \(b^{2}\)
k = 3 : \(a^{3}\) \(3a^{2}b\) \(3ab^{2}\) \(b^{3}\)
.......
去掉\(a\)和\(b\),就能发现他就是个杨辉三角,那我们就可以先预处理好杨辉三角(也可以打表)
我们继续观察,杨辉三角上是要乘上\(a\)和\(b\)的,现在我们就要找该怎么乘了;观察次数,\(a\)的次数是\(n\)的大小,\(b\)也是\(m\)的大小,那么就可以先把\(a\),\(b\)乘方后的数乘到他们对应的杨辉三角的数;至于乘方,我用的快速幂,其实爆乘应该也可以,看喜好吧,只要每次都\(%\)去哪个规定的数就行了(没试过鸭)
说了这么多,我们还没确定他们的位置,观察,由于杨辉三角的第一排其实不为\(1\),所以对应的行数也就是\(k+1\)了,在确定列,可以发现,其实就是\(m+1\);现在,就做出来啦
接下来就是蒟蒻的代码啦!
#include <bits/stdc++.h>
using namespace std;
long long a/*x*/ , b/*y*/ , k , m/*y*/ , n/*x*/ , mo = 10007 , ans; //标记好对应的字母,以防带错值了
long long ret = 1; //快速幂的答案
long long f[10011][10011]; //杨辉三角
int main(){
f[1][1] = 1; //杨辉三角的第一行为1,后面才好算嘛
for(int i = 2; i <= 1005; i++) //数据最大为1000,所以1000多就够了
for(int j = 1; j <= i; j++)
f[i][j] = (f[i - 1][j - 1] % mo + f[i - 1][j] % mo) % mo; //每一步都%,以防答案太大
cin >> a >> b >> k >> n >> m;
ans = f[k + 1][m + 1]; //答案初始化了
while(n){ //快速幂~~~
if(n % 2 == 1) ret = ret * a % mo;
n /= 2;
a = a * a % mo;
}
ans *= ret % mo;
ret = 1; //上一个用完就要初始化了
while(m){
if(m % 2 == 1) ret = ret * b % mo;
m /= 2;
b = b * b % mo;
}
ans *= ret % mo;
cout << ans % mo;
return 0;
}
就这么多啦,溜了溜了
洛谷 P1313 【计算系数】的更多相关文章
- 洛谷P1313 计算系数【快速幂+dp】
P1313 计算系数 题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别 ...
- 洛谷 P1313 计算系数 解题报告
P1313 计算系数 题目描述 给定一个多项式\((by+ax)^k\),请求出多项式展开后\(x^n*y^m\)项的系数. 输入输出格式 输入格式: 共一行,包含5个整数,分别为\(a,b,k,n, ...
- 洛谷P1313 计算系数
P1313 计算系数 题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别 ...
- 洛谷 P1313 计算系数 Label:杨辉三角形 多项式计算
题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...
- 【数论】洛谷P1313计算系数
题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...
- [NOIP2011] 洛谷P1313 计算系数
题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...
- 洛谷 P1313 计算系数 —— 水题
题目:https://www.luogu.org/problemnew/show/P1313 不就是...C(k,n) * an * bm . 代码如下: #include<iostream&g ...
- 洛谷 P1313 计算系数
题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...
- 【洛谷P1313 计算系数】
题目连接 #include<algorithm> #include<iostream> #include<cstring> #include<cstdio&g ...
- 洛谷 P1313 计算系数 (二项式定理)
这道题正好复习了二项式定理 所以答案就是a^n * b^m * c(n, k) 然后注意一些细节 我一开始写组合数只写一行的组合数 即c[0] = 1; c[i] = c[i-1] * (n - i ...
随机推荐
- Java实现蓝桥杯分金币
分金币 圆桌旁坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一些金币, 最终使得每个人的金币数目相等.你的任务是求出被转手的金币数量的最小值. 比如,n=4,且4个人 ...
- Linux脚本安装包
脚本安装包 并不是独立的软件安装包类型,常见安装的是源码包,是人为把安装过程写成了自动安装的脚本,只要执行脚本,定义简答的参数,就可以实现安装,非常类似于Windows下软件的安装方式. 安装过程(安 ...
- 谈谈Spring中的对象跟Bean,你知道Spring怎么创建对象的吗?
本系列文章: 读源码,我们可以从第一行读起 你知道Spring是怎么解析配置类的吗? 配置类为什么要添加@Configuration注解? 推荐阅读: Spring官网阅读 | 总结篇 Spring杂 ...
- 【福利】FL Studio 20 汉化补丁包 _FL Studio 20 汉化包下载
我这两天在网上搜索FL Studio 20汉化包,找了半天也没有找到真正的汉化包,不过好在功夫不负有心人,让我找到了一个不错的FL Studio 20汉化网站,里面提供了FL Studio 20汉化包 ...
- 【实战】基于OpenCV的水表字符识别(OCR)
目录 1. USB摄像头取图 2. 图像预处理:获取屏幕ROI 2.1. 分离提取屏幕区域 2.2. 计算屏幕区域的旋转角度 2.3. 裁剪屏幕区域 2.4. 旋转图像至正向视角 2.5. 提取文字图 ...
- @loj - 2977@ 「THUSCH 2017」巧克力
目录 @description@ @solution@ @accepted code@ @details@ @description@ 「人生就像一盒巧克力,你永远不知道吃到的下一块是什么味道.」 明 ...
- Java——String类(常用类)
一.String类——描述字符串 常用的方法简单介绍: 1.charAt() 获取对应位置的字符 2.length() 获取字符串的长度 3.concat() 在字符串的尾部追加内容-----相当于连 ...
- Hadoop + Hive + HBase + Kylin伪分布式安装
问题导读 1. Centos7如何安装配置? 2. linux网络配置如何进行? 3. linux环境下java 如何安装? 4. linux环境下SSH免密码登录如何配置? 5. linux环境下H ...
- 数据库(mysql)基础操作
DDL(数据定义语言)------>建库,建表 DML(数据操作语言)------>对表中的记录操作增删改查 DQL(数据查询语言)------>对表中的查询操作 DCL(数据控制语 ...
- Numpy中的广播机制,数组的广播机制(Broadcasting)
这篇文章把numpy中的广播机制讲的十分透彻: https://jakevdp.github.io/PythonDataScienceHandbook/02.05-computation-on-arr ...