BZOJ_3675_[Apio2014]序列分割_斜率优化
BZOJ_3675_[Apio2014]序列分割_斜率优化
Description
Input
输入第一行包含两个整数n,k(k+1≤n)。
Output
输出第一行包含一个整数,为小H可以得到的最大分数。
Sample Input
4 1 3 4 0 2 3
Sample Output
HINT
【样例说明】
在样例中,小H可以通过如下3轮操作得到108分:
1.-开始小H有一个序列(4,1,3,4,0,2,3)。小H选择在第1个数之后的位置
将序列分成两部分,并得到4×(1+3+4+0+2+3)=52分。
2.这一轮开始时小H有两个序列:(4),(1,3,4,0,2,3)。小H选择在第3个数
字之后的位置将第二个序列分成两部分,并得到(1+3)×(4+0+2+
3)=36分。
3.这一轮开始时小H有三个序列:(4),(1,3),(4,0,2,3)。小H选择在第5个
数字之后的位置将第三个序列分成两部分,并得到(4+0)×(2+3)=
20分。
经过上述三轮操作,小H将会得到四个子序列:(4),(1,3),(4,0),(2,3)并总共得到52+36+20=108分。
【数据规模与评分】
:数据满足2≤n≤100000,1≤k≤min(n -1,200)。
首先能够证明分割时顺序不影响答案。
设两个分割点i,j。左端点为k,右端点为l。
那么先切i再切j的答案就是(s[l]-s[i])*(s[i]-s[k-1])+(s[l]-s[j])*(s[j]-s[i])
先切j再切i的答案就是(s[l]-s[j])*(s[j]-s[k-1])+(s[j]-s[i])*(s[i]-s[k-1])
展开后发现是相等的。
设F[i][j]表示前j个数分割i次的最高得分。
考虑从右往左切,但从左往右DP F[i][j]=max(F[i][j],F[i-1][k]+s[k]*(s[j]-s[k]))
然后推出斜率式子s[j]>(F[i][k]-s[k]*s[k]-F[i][l]+s[l]*s[l])/(s[l]-s[k])
但是这个式子当s[l]=s[k]时会出现除0操作,然后发现0对这个序列没有影响。
于是预处理把所有的零踢掉即可。
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef double f2;
typedef long long ll;
#define N 100050
int n,k;
int a[N],Q[N];
ll f[2][N],s[N];
f2 slope(int i,int p,int l) {
return (1.0*f[i&1][p]-s[p]*s[p]-f[i&1][l]+s[l]*s[l])/(s[l]-s[p]);
}
int main() {
scanf("%d%d",&n,&k);
int i,j,l,ln=0;
for(i=1;i<=n;i++) {
scanf("%d",&a[i]);
if(a[i]) {
a[++ln]=a[i];
s[ln]=s[ln-1]+a[ln];
}
}
n=ln;
//for(i=1;i<=n;i++) f[1][i]=s[i]*(s[n]-s[i]);
/*for(i=2;i<=k;i++) {
for(j=1;j<=n;j++) {
for(l=0;l<j;l++) {
f[i][j]=max(f[i][j],f[i-1][l]+(s[j]-s[l])*(s[n]-s[j]));
}
}
}*/
for(i=1;i<=k;i++) {
int L=1,R=0;
for(j=1;j<=n;j++) {
while(L<R&&slope(i-1,Q[L],Q[L+1])<s[j]) L++;
l=Q[L];
f[i&1][j]=f[i-1&1][l]+(s[j]-s[l])*s[l];
while(L<R&&slope(i-1,Q[R],j)<slope(i-1,Q[R],Q[R-1])) R--;
Q[++R]=j;
}
}
printf("%lld\n",f[k&1][n]);
}
BZOJ_3675_[Apio2014]序列分割_斜率优化的更多相关文章
- BZOJ 3675: [Apio2014]序列分割( dp + 斜率优化 )
WA了一版... 切点确定的话, 顺序是不会影响结果的..所以可以dp dp(i, k) = max(dp(j, k-1) + (sumn - sumi) * (sumi - sumj)) 然后斜率优 ...
- [Bzoj3675][Apio2014]序列分割(斜率优化)
3675: [Apio2014]序列分割 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 4021 Solved: 1569[Submit][Stat ...
- P3648 [APIO2014]序列分割(斜率优化dp)
P3648 [APIO2014]序列分割 我们先证明,分块的顺序对结果没有影响. 我们有一个长度为3的序列$abc$ 现在我们将$a,b,c$分开来 随意枚举一种分块方法,如$(ab)(c)$,$(a ...
- BZOJ3675 [Apio2014]序列分割 【斜率优化dp】
3675: [Apio2014]序列分割 Time Limit: 40 Sec Memory Limit: 128 MB Submit: 3366 Solved: 1355 [Submit][St ...
- BZOJ3675 [Apio2014]序列分割 动态规划 斜率优化
原文链接http://www.cnblogs.com/zhouzhendong/p/8697258.html 题目传送门 - BZOJ3675 题意 对于一个非负整数序列,小H需要重复k次以下的步骤: ...
- 【洛谷3648】[APIO2014] 序列分割(斜率优化DP)
点此看题面 大致题意: 你可以对一个序列进行\(k\)次分割,每次得分为两个块元素和的乘积,求总得分的最大值. 区间\(DPor\)斜率优化\(DP\) 这题目第一眼看上去感觉很明显是区间\(DP\) ...
- 2018.09.29 bzoj3675: [Apio2014]序列分割(斜率优化dp)
传送门 斜率优化dp经典题目. 首先需要证明只要选择的K个断点是相同的,那么得到的答案也是相同的. 根据分治的思想,我们只需要证明有两个断点时成立,就能推出K个断点时成立. 我们设两个断点分成的三段连 ...
- BZOJ3675 Apio2014 序列分割 【斜率优化】
Description 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列.为了得到k+1个子序列,小H需要重复k次以下的步骤: 1.小H首 ...
- 洛谷P3648 [APIO2014]序列分割(斜率优化)
传送门 没想到这种多个状态转移的还能用上斜率优化……学到了…… 首先我们可以发现,切的顺序对最终答案是没有影响的 比方说有一个序列$abc$,每一个字母都代表几个数字,那么先切$ab$再切$bc$,得 ...
随机推荐
- jQuery之select的option怎样绑定事件
HTML: <select id='select'> <option value='0'>上海</option> <option value='1'>北 ...
- 排序算法入门之归并排序(java实现)
归并排序是采用分治法的典型应用. 参考<数据结构与算法分析-Java语言描述> 归并排序其实要做两件事: (1)"分解"--将序列每次折半划分. (2)"合并 ...
- IBM RAD 快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了) Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加) Ctrl+Alt+↑ ...
- VueJs(9)---组件(父子通讯)
组件(父子通讯) 一.概括 在一个组件内定义另一个组件,称之为父子组件. 但是要注意的是:1.子组件只能在父组件内部使用(写在父组件tempalte中); 2.默认情况下,子组件无法访问父组件上的数据 ...
- 深度学习之 TensorFlow(二):TensorFlow 基础知识
1.TensorFlow 系统架构: 分为设备层和网络层.数据操作层.图计算层.API 层.应用层.其中设备层和网络层.数据操作层.图计算层是 TensorFlow 的核心层. 2.TensorFlo ...
- yii2实战之初见端倪
PHP框架大PK php框架有很多种,在国内应用较多的有:Thinkphp, Yii, Laravel, Codeigniter等.关于这些框架,孰优孰劣,是一个极具争议性的话题.各方支持者总能拿出自 ...
- Sass快速入门学习笔记
1. 使用变量; sass让人们受益的一个重要特性就是它为css引入了变量.你可以把反复使用的css属性值 定义成变量,然后通过变量名来引用它们,而无需重复书写这一属性值.或者,对于仅使用过一 次的属 ...
- oracle中通过sql查询sde中图形面积
select st_area(shape) from XAG2011430200000M_DLTB t where objectid=330
- 利用webmagic获取天猫评论
引言 爬取商品信息 爬取商品评论 数据清洗 1. 引言 现代网页往往其HTML只有基本结构,而数据是通过AJAX或其他方法获取后填充,这样的模式对爬虫有一定阻碍,但是熟练以后获取并不困难,本文以爬取天 ...
- 115个Java面试题和答案——终极列表(上)【转】
本文我们将要讨论Java面试中的各种不同类型的面试题,它们可以让雇主测试应聘者的Java和通用的面向对象编程的能力.下面的章节分为上下两篇,第一篇将要讨论面向对象编程和它的特点,关于Java和它的功能 ...