1804: 有向无环图

Submit Page   Summary   Time Limit: 5 Sec     Memory Limit: 128 Mb     Submitted: 716     Solved: 298


Description

Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 v 开始、点 v 结束的路径)。
为了方便,点用 1,2,…,n 编号。 设 count(x,y) 表示点 x 到点 y 不同的路径数量(规定 count(x,x)=0),Bobo 想知道
 
 
除以 (109+7) 的余数。
其中,ai,bj 是给定的数列。
 

Input

输入包含不超过 15 组数据。
每组数据的第一行包含两个整数 n,m (1≤n,m≤105).
接下来 n 行的第 i 行包含两个整数 ai,bi (0≤ai,bi≤109).
最后 m 行的第 i 行包含两个整数 ui,vi,代表一条从点 ui 到 vi 的边 (1≤ui,vi≤n)。
 

Output

对于每组数据,输出一个整数表示要求的值。

Sample Input

3 3
1 1
1 1
1 1
1 2
1 3
2 3
2 2
1 0
0 2
1 2
1 2
2 1
500000000 0
0 500000000
1 2

Sample Output

4
4
250000014

Hint

Source

湖南省第十二届大学生计算机程序设计竞赛

 
先将每个点i对应的count(i,j)*bj算出来然后乘ai,累加就是答案,注意这里要类似拓扑排序那样,不过要倒着做,避免后效性
参考博客 http://blog.csdn.net/qq_21057881/article/details/52431139
 
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<vector>
#include<queue>
using namespace std;
#define LL long long
const int maxn = 1e5+;
const int mod = 1e9+;
vector<int>e[maxn];
int a[maxn],b[maxn],d[maxn];
int ans[maxn];
int main(){
int n,m;
while(cin >> n >> m){
for(int i=;i<=n;i++){
e[i].clear();
}
memset(d,,sizeof(d));
memset(ans,,sizeof(ans));
for(int i=;i<=n;i++){
cin >> a[i] >> b[i];
}
for(int i=;i<=m;i++){
int u,v;
cin >> u >> v;
e[v].push_back(u);
d[u]++;//终点为u的路径的条数
}
queue<int> q;
for(int i=;i<=n;i++){
if(d[i] == ){//把终点为i的路径数为0的点加入队列
q.push(i);
}
}
while(!q.empty()){
int v = q.front();
q.pop();
for(int i=;i<e[v].size();i++){
int u = e[v][i];
ans[u] = (ans[u] + (ans[v] + b[v])%mod)%mod;
//之所以是加b[v],是因为乘是相当于整体而言,一条就是1*b[v]相当于加b[v]
d[u]--;
if(d[u] == ){
q.push(u);
}
}
}
LL res = ;
for(int i=;i<=n;i++){
res = (res + 1LL*ans[i]*a[i]%mod)%mod;
}
cout << res << endl;
}
return ;
}

CSU 1804: 有向无环图 拓扑排序 图论的更多相关文章

  1. CSU 1804 - 有向无环图 - [(类似于)树形DP]

    题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1804 Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 ...

  2. 图->有向无环图->拓扑排序

    文字描述 关于有向无环图的基础定义: 一个无环的有向图称为有向无环图,简称DAG图(directed acycline graph).DAG图是一类较有向树更一般的特殊有向图. 举个例子说明有向无环图 ...

  3. CSU 1804: 有向无环图(拓扑排序)

    http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1804 题意:…… 思路:对于某条路径,在遍历到某个点的时候,之前遍历过的点都可以到达它,因此在 ...

  4. csu 1804 有向无环图

    题目地址 分析:从复杂度来看,一定不可能是枚举和来计算.1e5的规模来看,应该是复杂度比较合适. 我是这么想的,对于三个点,假设1->2有a种走法,2->3有b种走法.那么1->3应 ...

  5. 湖南省第十二届大学生计算机程序设计竞赛 B 有向无环图 拓扑DP

    1804: 有向无环图 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 187  Solved: 80[Submit][Status][Web Board ...

  6. 【拓扑】【宽搜】CSU 1084 有向无环图 (2016湖南省第十二届大学生计算机程序设计竞赛)

    题目链接: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1804 题目大意: 一个有向无环图(DAG),有N个点M条有向边(N,M<=105 ...

  7. csu oj 1804: 有向无环图 (dfs回溯)

    题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1804 中文题意就不说了. dfs从底到根回溯即可,看代码应该能清楚. //#pragma ...

  8. 有向无环图的应用—AOV网 和 拓扑排序

    有向无环图:无环的有向图,简称 DAG (Directed Acycline Graph) 图. 一个有向图的生成树是一个有向树,一个非连通有向图的若干强连通分量生成若干有向树,这些有向数形成生成森林 ...

  9. 第十二届湖南省赛 (B - 有向无环图 )(拓扑排序+思维)好题

    Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 v 开始.点 v 结束的路径). 为了方便,点用 1,2,…,n 编号. 设 count(x,y) 表示点 x 到点 y ...

随机推荐

  1. HC-08 BLE资料

    1.1 特点简介 HC-08蓝牙串口通信模块是新一代的基于Bluetooth Specification V4.0 BLE蓝牙协议的数传模块.无线工作频段为 2.4GHz ISM,调制方式是 GFSK ...

  2. 大型系列课程之-七夕告白之旅Electron篇

    上一篇分享了一下vbs的撩妹攻略,但细心的兄弟会发现,这种脚本式的攻城方案并不得心应手,有很多妹子害怕是病毒根本不敢点击,而且这个脚本界面风格也不漂亮,不能轻易打动妹子的心,怎么破,小编这次在为各位老 ...

  3. Oracle创建设置查询权限用户

    用户创建的可以参考博客: https://blog.csdn.net/u014427391/article/details/84889023 Oracle授权表权限给用户: 语法:grant [权限名 ...

  4. 【POJ - 2431】Expedition(优先队列)

    Expedition 直接中文 Descriptions 一群奶牛抓起一辆卡车,冒险进入丛林深处的探险队.作为相当差的司机,不幸的是,奶牛设法跑过一块岩石并刺破卡车的油箱.卡车现在每运行一个单位的距离 ...

  5. JVM总结(一)

    JVM总结(1) 1.JVM组成: JVM由类加载器子系统.运行时数据区.执行引擎以及本地方法接口组成. 2.JVM运行原理: Java源文件经编译器,编译成字节码程序,通过JVM将每一条指令翻译成不 ...

  6. 利用反射搭建orm框架

    1思路 根据java反射获取属性上的 注解的value的值 然后拼接成sql去执行 这就是完成了一个orm实体关系映射 package src.Test.Reflect;import java.lan ...

  7. C#_会员管理系统

    https://www.cnblogs.com/start-from-scratch/p/5420588.html

  8. Winform改变Textbox边框颜色

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  9. 使用 php 内部web服务器

    使用 php 内部web服务器如网站目录 d:\web\index.php1.打开命令窗口,输入下列3条命令cd d:cd d:\web\index.phpphp -S localhost:80802 ...

  10. 移动开发-UI设计

        UI:手机的用户界面 UI物理版:手机实际的屏幕像素 UI设计版:我们截屏的手机界面在ps中去量,发现的尺寸 UI放大版:手机的尺寸等比放大1.5倍得出的分辨率   响应式布局 原由:窗体缩小 ...