1874: [BeiJing2009 WinterCamp]取石子游戏

Time Limit: 5 Sec  Memory Limit: 162 MB
Submit: 925  Solved: 381
[Submit][Status][Discuss]

Description

小H和小Z正在玩一个取石子游戏。 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,
每次取石子的个数有限制,谁不能取石子时就会输掉游戏。 小H先进行操作,他想问你他是否有必胜策略,如果有
,第一步如何取石子。

Input

输入文件的第一行为石子的堆数N 
接下来N行,每行一个数Ai,表示每堆石子的个数 接下来一行为每次取石子个数的种类数M 
接下来M行,每行一个数Bi,表示每次可以取的石子个数,
输入保证这M个数按照递增顺序排列。
N≤10 Ai≤1000
对于全部数据,M≤10,Bi≤10

Output

输出文件第一行为“YES”或者“NO”,表示小H是否有必胜策略。 
若结果为“YES”,则第二行包含两个数,第一个数表示从哪堆石子取,第二个数表示取多少个石子,
若有多种答案,取第一个数最小的答案,
若仍有多种答案,取第二个数最小的答案。

Sample Input

4
7
6
9
3
2
1
2

Sample Output

YES
1 1
Hint
样例中共有四堆石子,石子个数分别为7、6、9、3,每人每次可以从任何一堆石子中取出1个或者2个石子,小H有
必胜策略,事实上只要从第一堆石子中取一个石子即可。

Source

Day2

分析:比较简单的博弈论题. 预处理出sg函数值. 将每组式子的sg异或一下看是否等于0. 输出方案的话枚举是哪一堆石子取出多少个石子,如果取出后后手必输,就是答案.利用sg函数判断.

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; const int maxn = ;
int n,a[maxn],sg[maxn],ans,Tim,vis[maxn],b[maxn],m; void init()
{
for (int i = ; i <= ; i++)
{
Tim++;
for (int j = ; j <= m; j++)
{
if (i - b[j] >= )
vis[sg[i - b[j]]] = Tim;
}
for (int j = ; j <= ; j++)
if (vis[j] != Tim)
{
sg[i] = j;
break;
}
}
} int main()
{
scanf("%d",&n);
for (int i = ; i <= n; i++)
scanf("%d",&a[i]);
scanf("%d",&m);
for (int i = ; i <= m; i++)
scanf("%d",&b[i]);
init();
for (int i = ; i <= n; i++)
{
if (i == )
ans = sg[a[i]];
else
ans ^= sg[a[i]];
}
if (ans == )
puts("NO");
else
{
puts("YES");
for (int i = ; i <= n; i++)
{
bool flag = false;
for (int j = ; j <= m; j++)
{
if (a[i] >= b[j] && (ans ^ sg[a[i]] ^ sg[a[i] - b[j]]) == )
{
printf("%d %d\n",i,b[j]);
flag = ;
break;
}
}
if (flag)
break;
}
} return ;
}

bzoj1874 [BeiJing2009 WinterCamp]取石子游戏的更多相关文章

  1. [bzoj1874][BeiJing2009 WinterCamp]取石子游戏_博弈论

    取石子游戏 bzoj-1874 BeiJing2009 WinterCamp 题目大意:题目链接. 注释:略. 想法: 我们通过$SG$函数的定义来更新$SG$的转移. 如果是寻求第一步的话我们只需要 ...

  2. 【博弈论】【SG函数】【枚举】bzoj1874 [BeiJing2009 WinterCamp]取石子游戏

    枚举第一步可能达到的状态,判断是否是必败态即可. #include<cstdio> #include<set> #include<cstring> using na ...

  3. 1874: [BeiJing2009 WinterCamp]取石子游戏 - BZOJ

    Description小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问 ...

  4. BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏 [Nim游戏 SG函数]

    小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问你他是否有必胜策略,如 ...

  5. BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏(SG函数)

    Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 871  Solved: 365[Submit][Status][Discuss] Description ...

  6. BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏

    Time Limit: 5 Sec Memory Limit: 162 MB Submit: 957 Solved: 394 [Submit][Status][Discuss] Description ...

  7. [BZOJ 1874] [BeiJing2009 WinterCamp] 取石子游戏 【博弈论 | SG函数】

    题目链接:BZOJ - 1874 题目分析 这个是一种组合游戏,是许多单个SG游戏的和. 就是指,总的游戏由许多单个SG游戏组合而成,每个SG游戏(也就是每一堆石子)之间互不干扰,每次从所有的单个游戏 ...

  8. bzoj 1874: [BeiJing2009 WinterCamp]取石子游戏【博弈论】

    先预处理出来sg值,然后先手必败状态就是sg[a[i]]的xor和为0(nim) 如果xor和不为0,那么一定有办法通过一步让xor和为0,具体就是选一个最大的sg[a[i]],把它去成其他sg值的x ...

  9. [BeiJing2009 WinterCamp]取石子游戏 Nim SG 函数

    Code: #include<cstdio> #include<algorithm> #include<cstring> using namespace std; ...

随机推荐

  1. vue+webpack前端开发项目的安装方法

    安装前,需要进行node.npm检测,查看是否已有安装node.npm环境: 操作方法:Windows+R 调出运行框,输入cmd 调出命令框:分别输入node -v 回车(查看node版本) npm ...

  2. spring-boot+swagger实现WebApi文档

    1.引用依赖包 <dependency> <groupId>io.springfox</groupId> <artifactId>springfox-s ...

  3. 深入理解Java类加载器(ClassLoader) (转)

    转自: http://blog.csdn.net/javazejian/article/details/73413292 关联文章: 深入理解Java类型信息(Class对象)与反射机制 深入理解Ja ...

  4. 封装js插件学习指南

    封装js插件学习指南 1.原生JavaScript插件编写指南 => 传送门 2.如何定义一个高逼格的原生JS插件 =>传送门 3.手把手教你用原生JavaScript造轮子 =>  ...

  5. bootstrap轮播图不能显示左右箭头

    引入font文件夹即可 原文 :http://www.imooc.com/qadetail/64277

  6. js 基础拓展

    1.关于 try catch 的用法 <body> <div>请输出一个 5 到 10 之间的数字:</div> <input id="demo&q ...

  7. 20172324《Java程序设计》第二周学习总结

    20172324<Java程序设计>第2周学习总结 教材学习内容总结 了解了字符串及其拼接和转义序列的使用. Java的基本数据类型. 定义数据转换类型和实现其转换的方法. Scanner ...

  8. springmvc 映射重复

    org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'org.springfr ...

  9. POJ 2104 K-th Number 主席树(区间第k大)

    题目链接: http://poj.org/problem?id=2104 K-th Number Time Limit: 20000MSMemory Limit: 65536K 问题描述 You ar ...

  10. HTML和CSS <h1> --3-- <h1>

    标签语义化,让网页更好的被搜索引擎理解 标签的用途:我们学习网页制作时,常常会听到一个词,语义化.那么什么叫做语义化呢,说的通俗点就是:明白每个标签的用途(在什么情况下使用此标签合理)比如,网页上的文 ...