Description

  这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵
不能相互重叠。

Input

  第一行为n,m,k(1≤n≤100,1≤m≤2,1≤k≤10),接下来n行描述矩阵每行中的每个元素的分值(每个元素的
分值的绝对值不超过32767)。

Output

  只有一行为k个子矩阵分值之和最大为多少。

题解:
  看了半天,突然发现,m小于等于2啊。
  然后就乱dp一波,除了转移写起来很麻之外,就没什么了。
  令f[i][j][k]表示当前第i行,以选中j个矩阵,当前行的取法为k的得分数,(取法只有5种啦)。
代码:
#include<bits/stdc++.h>
using namespace std;
inline int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
}
#define MN 105
#define inf 0x7f
int n,m,k,a[MN][],ans;
int f[MN][][];
void rw(int &x,int y){if(y>x)x=y;}
int main(){
n=read(),m=read(),k=read();
register int i,j;
for(i=;i<=n;i++)for(j=;j<=m;j++) a[i][j]=read();
if(m==){
for(i=;i<=n;i++) for(j=;j<=k;j++){
rw(f[i][j][],f[i-][j][]);
rw(f[i][j][],f[i-][j][]);
rw(f[i][j][],f[i-][j][]+a[i][]);
rw(f[i][j][],f[i-][j-][]+a[i][]);
}
printf("%d\n",max(f[n][k][],f[n][k][]));
}
else{
memset(f,-inf,sizeof f);
for(i=;i<=n;i++)for(j=;j<=k;j++) f[i][j][]=;
for(i=;i<=n;i++)for(j=;j<=k;j++){
for(int h=;h<=;h++) rw(f[i][j][],f[i-][j][h]); f[i][j][]=max(f[i-][j][],f[i-][j][])+a[i][];
f[i][j][]=max(f[i-][j][],f[i-][j][])+a[i][];
rw(f[i][j][],f[i-][j-][]+a[i][]);
rw(f[i][j][],f[i-][j-][]+a[i][]);
rw(f[i][j][],max(f[i-][j-][],f[i-][j-][])+a[i][]);
rw(f[i][j][],max(f[i-][j-][],f[i-][j-][])+a[i][]); f[i][j][]=max(f[i-][j-][],f[i-][j][])+a[i][]+a[i][];
rw(f[i][j][],max(f[i-][j-][],f[i-][j-][])+a[i][]+a[i][]);
rw(f[i][j][],f[i-][j-][]+a[i][]+a[i][]); f[i][j][]=f[i-][j][]+a[i][]+a[i][];
rw(f[i][j][],max(f[i-][j-][],f[i-][j-][])+a[i][]+a[i][]);
if(j>=) rw(f[i][j][],max(f[i-][j-][],f[i-][j-][])+a[i][]+a[i][]);
}
ans=-1e12;
for(i=;i<=;i++) rw(ans,f[n][k][i]);
printf("%d\n",ans);
}
return ;
}

来自PaperCloud的博客,未经允许,请勿转载,TKS!

[SCOI2005][BZOJ 1084]最大子矩阵的更多相关文章

  1. BZOJ 1084 最大子矩阵

    http://www.lydsy.com/JudgeOnline/problem.php?id=1084 思路:分m=1和m=2操作 #include<algorithm> #includ ...

  2. BZOJ 1084 最大子矩阵 dp

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1084 题目大意: 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分 ...

  3. 【SCOI2005】 最大子矩阵 BZOJ 1084

    Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. Input 第一行为n,m,k(1≤n≤100,1≤m≤2 ...

  4. [BZOJ 1084] [SCOI2005] 最大子矩阵 【DP】

    题目链接:BZOJ - 1084 题目分析 我看的是神犇BLADEVIL的题解. 1)对于 m = 1 的情况, 首先可能不取 Map[i][1],先 f[i][k] = f[i - 1][k];   ...

  5. BZOJ 1084: [SCOI2005]最大子矩阵 DP

    1084: [SCOI2005]最大子矩阵 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1084 Description 这里有一个n* ...

  6. 【BZOJ 1084】 1084: [SCOI2005]最大子矩阵 (DP)

    1084: [SCOI2005]最大子矩阵 Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. Input 第 ...

  7. 【BZOJ 1084】 [SCOI2005]最大子矩阵(DP)

    题链 http://www.lydsy.com/JudgeOnline/problem.php?id=1084 Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩 ...

  8. BZOJ 1084 [SCOI2005]最大子矩阵 - 动态规划

    传送门 题目大意: 从矩阵中取出k个互不重叠的子矩阵,求最大的和. 题目分析: 对于m=1,直接最大m子段和. 对于m=2: \(dp[i][j][k]\)表示扫描到第一列i和第2列j时选取了k个矩阵 ...

  9. BZOJ: 1084: [SCOI2005]最大子矩阵

    NICE 的DP 题,明白了题解真是不错. Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1228  Solved: 622[Submit][Stat ...

随机推荐

  1. aspnetcore 容器化部属到阿里云全过程记录

    第一次写博客,作为一个全栈er,记录一下从阿里云到产品运维上线的全过程 一.阿里云上的设置 购买阿里云ECS后: 进控制台查看实例公网IP 在控制台.网络与安全->安全组,配置规则 点击进去可以 ...

  2. 2019北航OO第三单元作业总结

    1.梳理JML语言的理论基础.应用工具链情况 JML基础理论: JML(Java Modeling Language)是用于对Java程序进行规格化设计的一种表示语言.JML是一种行为接口规格语言,基 ...

  3. django路由的反向解析

    什么是路由的反向解析 我们的路由都是一个匹配关系,对应一个处理的视图函数, 如果我们的匹配关系发生了变化,那么与之对应的访问地址(可能前端直接url链接, 也可能是后端的redrict跳转)都需要跟着 ...

  4. Selenium文件上传

    转自:https://www.cnblogs.com/miaojjblog/p/9679915.html Web上本地上传图片,弹出的框Selenium是无法识别的,也就是说,selenium本身没有 ...

  5. Linux (x86) Exploit 开发系列教程之三(Off-By-One 漏洞 (基于栈))

    off by one(栈)? 将源字符串复制到目标缓冲区可能会导致off by one 1.源字符串长度等于目标缓冲区长度. 当源字符串长度等于目标缓冲区长度时,单个NULL字节将被复制到目标缓冲区上 ...

  6. C# NPOI Excel 合并单元格和取消单元格

    1.合并单元操作 //合并单元格 /** 第一个参数:从第几行开始合并 第二个参数:到第几行结束合并 第三个参数:从第几列开始合并 第四个参数:到第几列结束合并 **/ CellRangeAddres ...

  7. Referenced file contains errors (xml文件第一行小红叉错误)

    转自:http://www.manongjc.com/article/30401.html 在eclipse中开发网页时,经常会遇到写xml文件时第一行无缘无故报错.在最左面的行数上面报出一个小红叉, ...

  8. kubernetes-使用kubeadm部署kubernetes集群

    k8s官网介绍 Kubernetes是一个可移植的,可扩展的开源平台,用于管理容器化的工作负载和服务,可促进声明式配置和自动化.它拥有一个庞大且快速增长的生态系统.Kubernetes的服务,支持和工 ...

  9. 【HICP Gauss】数据库 数据库管理(调优 启动流程)-4

    数据库参数: 创建数据库 调优数据库 其他---->控制资源使用 控制数据库内部机制 设置重要属性 参数数据保存在cfg/Zengine.ini 文件中 参数保存使用 key=value的保存形 ...

  10. 代码重复检查工具——python的使用CPD比较好用,clone digger针对py2,其他有名的如Simian PMD-CPD CloneDR CCCD CCFinder Bauhaus CodePro

    代码重复检测: cpd --minimum-tokens 100 --files g:\source\python\ --language python >log.txt 输出类似: ===== ...