bzoj 3190 [JLOI2013]赛车 半平面交+细节处理
题目大意
这里有一场赛车比赛正在进行,赛场上一共有N辆车,分别称为g1,g2……gn。赛道是一条无限长的直线。最初,gi位于距离起跑线前进ki的位置。比赛开始后,车辆gi将会以vi单位每秒的恒定速度行驶。在这个比赛过程中,如果一辆赛车曾经处于领跑位置的话(即没有其他的赛车跑在他的前面),这辆赛车最后就可以得奖,而且比赛过程中不用担心相撞的问题。现在给出所有赛车的起始位置和速度,你的任务就是算出那些赛车将会得奖。
分析
一辆车的函数就是\(f_i(x)=k_i x +b_i\)
那题目就是要使得有一时刻\(f_i(x)\)下面有所有\(f_j(x)\)
那么就有一个性质:
一向量\(x\)在某段时间在另一向量\(y\)的左边,那么这段时间\(x\)领先
那么就有曾经领先在所有车前面的赛车
它的函数出现在半平面交上
注意
细节挺多的
1.函数中有一个点在半平面交上也算进答案
2.重边要特判
所以先排好序,算好重边,加个vector,再跑半平面交,比较好写些
solution
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <algorithm>
#include <vector>
using namespace std;
typedef double db;
const int M=10007;
inline int rd(){
int x=0;;bool f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-')f=0;
for(;isdigit(c);c=getchar()) x=x*10+c-48;
return f?x:-x;
}
struct pt{
db x,y;
pt(db xx=0.0,db yy=0.0){x=xx;y=yy;}
};
pt operator +(pt x,pt y){return pt(x.x+y.x,x.y+y.y);}
pt operator -(pt x,pt y){return pt(x.x-y.x,x.y-y.y);}
pt operator *(pt x,db d){return pt(x.x*d,x.y*d);}
pt operator /(pt x,db d){return pt(x.x/d,x.y/d);}
db dot(pt x,pt y){return x.x*y.x+x.y*y.y;}
db det(pt x,pt y){return x.x*y.y-x.y*y.x;}
db len(pt x){return sqrt(dot(x,x));}
db dis(pt x,pt y){return len(y-x);}
db area(pt x,pt y,pt z){return det(y-x,z-x);}
struct line{
pt P,v;
int cnt;
line(pt PP=pt(),pt vv=pt(),int cc=0){P=PP;v=vv;cnt=cc;}
}l[M],s[M];
int top;
bool ptright(pt x,line y){return det(y.v,x-y.P)<0;}//<0因为在半平面上的点也能算进答案里面
bool parallel(line x,line y){return det(x.v,y.v)==0;}
pt inter(line x,line y){
pt u=x.P-y.P;
db t=det(u,y.v)/det(y.v,x.v);
return x.P+x.v*t;
}
struct pai{int k,b,id;}a[M];
bool operator ==(pai x,pai y){return x.k==y.k&&x.b==y.b;}
bool operator !=(pai x,pai y){return !(x==y);}
bool cmp(pai x,pai y){
if(x.k!=y.k)return x.k<y.k;
return x.b<y.b;
}
int n,m;
vector<int>g[M];
int ps[M];
int ans=0;
int out[M];
void hpi(){
top=0;
for(int i=1;i<=m;i++){
while(top>1&&ptright(inter(s[top-1],s[top]),l[i])) top--;
s[++top]=l[i];ps[top]=i;
}
}
int main(){
int i,j;
n=rd();
for(i=1;i<=n;i++) a[i].b=rd();
for(i=1;i<=n;i++) a[i].k=rd();
for(i=1;i<=n;i++) a[i].id=i;
sort(a+1,a+n+1,cmp);
l[m=1]=line(pt(0,0),pt(0,-1),0);
for(i=1;i<=n;i++){
if(i==1||a[i]!=a[i-1]) l[++m]=line(pt(0,a[i].b),pt(1,a[i].k),0);
l[m].cnt++;
g[m].push_back(a[i].id);
}
hpi();
int tot=0;
for(i=1;i<=top;i++){
ans+=s[i].cnt;
for(j=0;j<g[ps[i]].size();j++) out[++tot]=g[ps[i]][j];
}
sort(out+1,out+tot+1);
printf("%d\n",ans);
for(i=1;i<tot;i++) printf("%d ",out[i]);
printf("%d\n",out[tot]);
return 0;
}
bzoj 3190 [JLOI2013]赛车 半平面交+细节处理的更多相关文章
- 【BZOJ 3190】 3190: [JLOI2013]赛车 (半平面交)
3190: [JLOI2013]赛车 Description 这里有一辆赛车比赛正在进行,赛场上一共有N辆车,分别称为个g1,g2--gn.赛道是一条无限长的直线.最初,gi位于距离起跑线前进ki的位 ...
- bzoj 2618: [Cqoi2006]凸多边形 [半平面交]
2618: [Cqoi2006]凸多边形 半平面交 注意一开始多边形边界不要太大... #include <iostream> #include <cstdio> #inclu ...
- bzoj 1038 瞭望塔 半平面交+分段函数
题目大意 给你一座山,山的形状在二维平面上为折线 给出\((x_1,y_1),(x_2,y_2)...(x_n,y_n)\)表示山的边界点或转折点 现在要在\([x_1,x_n]\)(闭区间)中选择一 ...
- [HNOI2012][BZOJ2732] 射箭 [二分+半平面交]
题面 BZOJ题面 思路 半平面交代码讲解戳这里,用的就是这道题 我们射箭的函数形如$y=Ax^2+Bx$ 考虑每一个靶子$(x_0,y_1,y_2)$,实际上是关于$A,B$的不等式限制条件 我们只 ...
- 2018.07.04 BZOJ 2618 Cqoi2006凸多边形(半平面交)
2618: [Cqoi2006]凸多边形 Time Limit: 5 Sec Memory Limit: 128 MB Description 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n ...
- BZOJ 3190 赛车 | 计算几何
BZOJ 3190 赛车 题面 这里有一辆赛车比赛正在进行,赛场上一共有N辆车,分别称为个g1,g2--gn.赛道是一条无限长的直线.最初,gi位于距离起跑线前进ki的位置.比赛开始后,车辆gi将会以 ...
- 【BZOJ 2618】 2618: [Cqoi2006]凸多边形 (半平面交)
2618: [Cqoi2006]凸多边形 Description 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. Input 第一 ...
- bzoj 1038 [ZJOI2008]瞭望塔(半平面交)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1038 [题意] 找一个最低塔高使可以看到村庄的每一个角落. [思路] 半平面交 能够看 ...
- bzoj 2618 2618: [Cqoi2006]凸多边形(半平面交)
2618: [Cqoi2006]凸多边形 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 656 Solved: 340[Submit][Status] ...
随机推荐
- 两个对象值转换的方法(BeanUtils.copyProperties与JSONObject.parseObject对比)
将源对象赋值到目标对象方法: 方法一:BeanUtils.copyProperties(源对象, 目标对象); //org.springframework.beans.BeanUtils 方法二:目标 ...
- vs2015驱动开发中使用RtlStringCchPrintfW()报错
法一: 在头顶添加一段代码 #pragam comment(lib,"xxxxxx.lib") 法二: 右击工程点属性,选择Linker下的Input,在依赖项后面写上$(DDK_ ...
- hash join
hash join是oracle里面一个非常强悍的功能,当做hash join时,oracle会选择一个表作为驱动表,先根据过滤条件排除不必要的数据,然后将结果集做成hash表,放入进程的hash a ...
- ES6_Promise 对象 阮一锋
Promise的含义 promise是异步编程的一种解决方法,比传统的回调函数和事件更合理更强大.他由社区最早提出和实现,ES6将其写进语言标准,统一了用法,原生提供了promise对象.所谓prom ...
- 【转】 VC中TCP实现 异步套接字编程的原理+代码
所谓的异步套接字编程就是 调用了 如下函数 WSAAsyncSelect 设置了 套接字的状态为异步,有关函数我会在下面详细介绍... 异步套接字解决了 套接字编程过程中的堵塞问题 .... ...
- 用宝塔软件在linux上自动安装php环境
1.确保是纯净系统 确保是干净的操作系统,没有安装过其它环境带的Apache/Nginx/php/MySQL,否则安装不上 2.sudo进行安装 yum install -y wget &&a ...
- [译]The Python Tutorial#4. More Control Flow Tools
[译]The Python Tutorial#More Control Flow Tools 除了刚才介绍的while语句之外,Python也从其他语言借鉴了其他流程控制语句,并做了相应改变. 4.1 ...
- graph-basic
打算使用STL中的vector,通过邻接链表的方式存储图.这里贴基本定义,以及depth-first-search和breadth-first-search的实现代码. 其他图的算法实现,就贴在各自的 ...
- LeetCode(289)Game of Life
题目 According to the Wikipedia's article: "The Game of Life, also known simply as Life, is a cel ...
- UVa 11695 树的直径 Flight Planning
题意: 给出一棵树,删除一条边再添加一条边,求新树的最短的直径. 分析: 因为n比较小(n ≤ 2500),所以可以枚举删除的边,分裂成两棵树,然后有这么一个结论: 合并两棵树后得到的新树的最短直径为 ...