scala> import org.apache.spark.SparkContext

import org.apache.spark.SparkContext

scala> import org.apache.spark.SparkConf

import org.apache.spark.SparkConf

scala> import org.apache.spark.sql.SQLContext

import org.apache.spark.sql.SQLContext

scala> import spark.implicits._

import spark.implicits._

scala> val mysqlcon=new SQLContext(sc)
warning: there was one deprecation warning; re-run with -deprecation for details
mysqlcon: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@3ac76ad9

scala> val mysqldf=mysqlcon.read.format("jdbc").options(Map("url"->"jdbc:mysql://localhost:3306/test","user"->"root","password"->"root","dbtable"->"Account_3004")).load()
mysqldf: org.apache.spark.sql.DataFrame = [AccountName: string, Accid: bigint ... 30 more fields]

scala> mysqldf.printSchema
root
 |-- AccountName: string (nullable = false)
 |-- Accid: long (nullable = false)
 |-- platid: integer (nullable = false)
 |-- DateID: integer (nullable = false)
 |-- CreateTime: timestamp (nullable = false)
 |-- Retention1: integer (nullable = false)
 |-- Retention2: integer (nullable = true)
 |-- Retention3: integer (nullable = true)
 |-- Retention4: integer (nullable = true)
 |-- Retention5: integer (nullable = true)
 |-- Retention6: integer (nullable = true)
 |-- Retention7: integer (nullable = true)
 |-- Retention10: integer (nullable = true)
 |-- Retention14: integer (nullable = true)
 |-- Retention21: integer (nullable = true)
 |-- Retention30: integer (nullable = true)
 |-- GameID: integer (nullable = false)
 |-- id: long (nullable = false)
 |-- adcode: string (nullable = true)
 |-- AddRMB1: double (nullable = true)
 |-- AddRMB2: double (nullable = true)
 |-- AddRMB3: double (nullable = true)
 |-- AddRMB4: double (nullable = true)
 |-- AddRMB5: double (nullable = true)
 |-- AddRMB6: double (nullable = true)
 |-- AddRMB7: double (nullable = true)
 |-- AddRMB10: double (nullable = true)
 |-- AddRMB14: double (nullable = true)
 |-- AddRMB21: double (nullable = true)
 |-- AddRMB30: double (nullable = true)
 |-- LoginTimes: integer (nullable = true)
 |-- LoginMinutes: integer (nullable = true)

scala> mysqldf.count()
res2: Long = 76813

scala> mysqldf.show(2)
+-----------+--------+------+--------+-------------------+----------+----------+----------+----------+----------+----------+----------+-----------+-----------+-----------+-----------+------+-----+------+-------+-------+-------+-------+-------+-------+-------+--------+--------+--------+--------+----------+------------+
|AccountName|   Accid|platid|  DateID|         CreateTime|Retention1|Retention2|Retention3|Retention4|Retention5|Retention6|Retention7|Retention10|Retention14|Retention21|Retention30|GameID|   id|adcode|AddRMB1|AddRMB2|AddRMB3|AddRMB4|AddRMB5|AddRMB6|AddRMB7|AddRMB10|AddRMB14|AddRMB21|AddRMB30|LoginTimes|LoginMinutes|
+-----------+--------+------+--------+-------------------+----------+----------+----------+----------+----------+----------+----------+-----------+-----------+-----------+-----------+------+-----+------+-------+-------+-------+-------+-------+-------+-------+--------+--------+--------+--------+----------+------------+
|           | 1004210|     6|20180116|2018-01-16 10:39:50|         1|         0|         0|         0|         0|         0|         0|          0|          0|          0|          0|  3004|22438|      |    0.0|    0.0|    0.0|    0.0|    0.0|    0.0|    0.0|     0.0|     0.0|     0.0|     0.0|         1|           7|
|           |20946754|     0|20170913|2017-09-13 10:02:37|         1|         0|         0|         1|         0|         0|         0|          0|          0|          0|          0|  3004|  167|      |    0.0|    0.0|    0.0|    0.0|    0.0|    0.0|    0.0|     0.0|     0.0|     0.0|     0.0|         3|         219|
+-----------+--------+------+--------+-------------------+----------+----------+----------+----------+----------+----------+----------+-----------+-----------+-----------+-----------+------+-----+------+-------+-------+-------+-------+-------+-------+-------+--------+--------+--------+--------+----------+------------+
only showing top 2 rows

scala> mysqldf.select("accid").show(2)
+--------+
|   accid|
+--------+
|20964769|
|22235886|
+--------+
only showing top 2 rows

scala> mysqldf.select("accid","platid").show(2)
+--------+------+
|   accid|platid|
+--------+------+
| 1004210|     6|
|20946754|     0|
+--------+------+
only showing top 2 rows

scala> mysqldf.filter($"dateid">20180510).count
res9: Long = 5101

scala> mysqldf.select($"accid",$"platid"+1000).show(2)
+--------+---------------+
|   accid|(platid + 1000)|
+--------+---------------+
| 1004210|           1006|
|20946754|           1000|
+--------+---------------+
only showing top 2 rows

scala> mysqldf.groupBy("platid").count().show
+------+-----+
|platid|count|
+------+-----+
|    27| 7157|
|    93|   44|
|   291|   10|
|     1| 8503|
|    13|  290|
|     6| 4765|
|     3| 3281|
|   295|    2|
| 10000|    1|
|   191|  758|
| 24294|    9|
|    19| 1549|
|    15| 8838|
|    17|    6|
|     9|  365|
|   286|    1|
|    35| 4075|
|     4|10395|
|   247|    1|
|   277|  453|
+------+-----+
only showing top 20 rows

scala> mysqldf.filter($"dateid">20180520).groupBy("platid").count().show
+------+-----+
|platid|count|
+------+-----+
|    27|  131|
|    93|   14|
|   291|    2|
|     1|  333|
|    13|   25|
|     6|  116|
|     3|   36|
|   191|  136|
| 24294|    2|
|    19|   39|
|    15|  978|
|     9|    2|
|    35|   72|
|     4|  161|
|   277|   11|
|    50|    8|
|    38|    4|
|   289|   12|
|    21|   24|
|    60|   75|
+------+-----+
only showing top 20 rows

scala> mysqldf.createOrReplaceTempView("account")

scala> val sqldf=spark.sql("select platid,accid,dateid  from account where dateid>=20180601" )
sqldf: org.apache.spark.sql.DataFrame = [platid: int, accid: bigint ... 1 more field]

scala> sqldf.show(2)
+------+--------+--------+
|platid|   accid|  dateid|
+------+--------+--------+
|     0|22514097|20180601|
|    36|22857594|20180601|
+------+--------+--------+
only showing top 2 rows

------------------------------------

Spark SQL中的临时性视图在会话范围内,如果创建会话的会话终止,它们将消失。如果您希望拥有一个在所有会话中共享的临时视图,并在Spark应用程序终止之前保持活动状态,您可以创建一个全局临时视图。全局临时视图与系统保存的数据库global_temp绑定,我们必须使用限定名来引用它,例如,从global_temp.view1中选择*。

--------------------------------------

scala> mysqldf.createOrReplaceGlobalTempView("tb_acc")

scala> val globaldf=spark.sql("select platid,accid,dateid  from global_temp.tb_acc where dateid>=20180601" )
globaldf: org.apache.spark.sql.DataFrame = [platid: int, accid: bigint ... 1 more field]

scala> globaldf.show(2)
+------+--------+--------+
|platid|   accid|  dateid|
+------+--------+--------+
|     0|22514097|20180601|
|    36|22857594|20180601|
+------+--------+--------+
only showing top 2 rows

--------------------------

Datasets are similar to RDDs, however, instead of using Java serialization or Kryo they use a specialized Encoder to serialize the objects for processing or transmitting over the network. While both encoders and standard serialization are responsible for turning an object into bytes, encoders are code generated dynamically and use a format that allows Spark to perform many operations like filtering, sorting and hashing without deserializing the bytes back into an object.

但是,数据集类似于RDDs,而不是使用Java序列化或Kryo,而是使用专门的编码器将对象序列化,以便在网络上进行处理或传输。尽管编码器和标准序列化都负责将对象转换成字节,编码器是动态生成的代码,并使用允许Spark执行许多操作(如过滤、排序和散列)的格式,而不会将字节反序列化为对象。

----------------------------------------------------------------

scala> val df1=spark.sql("select distinct platid,dateid  from account where dateid>=20180601" )
df1: org.apache.spark.sql.DataFrame = [platid: int, dateid: int]

scala> val ds=df1.toDF
ds: org.apache.spark.sql.DataFrame = [platid: int, dateid: int]

scala> mysqldf.where("dateid>20180601").count()

res36: Long = 2249

scala> mysqldf.filter("dateid>20180601").count()

res37: Long = 2249

scala> mysqldf.apply("accid")
res38: org.apache.spark.sql.Column = accid

scala> mysqldf.filter("dateid>20180601").orderBy(mysqldf("dateid")).show 顺序

scala>mysqldf.filter("dateid>20180601").orderBy(-mysqldf("dateid")).show  逆序

scala> mysqldf.filter("dateid>20180601").orderBy(mysqldf("dateid").desc).show 逆序

scala> mysqldf.groupBy("platid").agg(max("dateid"),min("dateid")).show(2)
+------+-----------+-----------+
|platid|max(dateid)|min(dateid)|
+------+-----------+-----------+
|    27|   20180619|   20170906|
|    93|   20180615|   20180314|
+------+-----------+-----------+
only showing top 2 rows

spark 练习的更多相关文章

  1. Spark踩坑记——Spark Streaming+Kafka

    [TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark strea ...

  2. Spark RDD 核心总结

    摘要: 1.RDD的五大属性 1.1 partitions(分区) 1.2 partitioner(分区方法) 1.3 dependencies(依赖关系) 1.4 compute(获取分区迭代列表) ...

  3. spark处理大规模语料库统计词汇

    最近迷上了spark,写一个专门处理语料库生成词库的项目拿来练练手, github地址:https://github.com/LiuRoy/spark_splitter.代码实现参考wordmaker ...

  4. Hive on Spark安装配置详解(都是坑啊)

    个人主页:http://www.linbingdong.com 简书地址:http://www.jianshu.com/p/a7f75b868568 简介 本文主要记录如何安装配置Hive on Sp ...

  5. Spark踩坑记——数据库(Hbase+Mysql)

    [TOC] 前言 在使用Spark Streaming的过程中对于计算产生结果的进行持久化时,我们往往需要操作数据库,去统计或者改变一些值.最近一个实时消费者处理任务,在使用spark streami ...

  6. Spark踩坑记——初试

    [TOC] Spark简介 整体认识 Apache Spark是一个围绕速度.易用性和复杂分析构建的大数据处理框架.最初在2009年由加州大学伯克利分校的AMPLab开发,并于2010年成为Apach ...

  7. Spark读写Hbase的二种方式对比

    作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 一.传统方式 这种方式就是常用的TableInputFormat和TableOutputForm ...

  8. (资源整理)带你入门Spark

    一.Spark简介: 以下是百度百科对Spark的介绍: Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方 ...

  9. Spark的StandAlone模式原理和安装、Spark-on-YARN的理解

    Spark是一个内存迭代式运算框架,通过RDD来描述数据从哪里来,数据用那个算子计算,计算完的数据保存到哪里,RDD之间的依赖关系.他只是一个运算框架,和storm一样只做运算,不做存储. Spark ...

  10. (一)Spark简介-Java&Python版Spark

    Spark简介 视频教程: 1.优酷 2.YouTube 简介: Spark是加州大学伯克利分校AMP实验室,开发的通用内存并行计算框架.Spark在2013年6月进入Apache成为孵化项目,8个月 ...

随机推荐

  1. ipconfig/all详解

    Ipconfig/all(win+R-->cmd-->ipconfig/all)最常用的就是显示自己主机的ip了,可以让我们了解自己的计算机是否成功的租用到一个IP地址.但是ipconfi ...

  2. PREV-9_蓝桥杯_大臣的旅费

    问题描述 很久以前,T王国空前繁荣.为了更好地管理国家,王国修建了大量的快速路,用于连接首都和王国内的各大城市. 为节省经费,T国的大臣们经过思考,制定了一套优秀的修建方案,使得任何一个大城市都能从首 ...

  3. 【HTTP】使用 RestTemplete 实现 post请求

    如上图,要求: post请求; x-www-form-urlencoded 类型; 如下代码没有进行整理,但是测试OK package com.chinamobile.epic.http; impor ...

  4. 修改String中的内容

    例子:有一个字符串"abcdef",现在想让字符串中的字符各自加1,求修改后的字符 String 在Java中是不可修改的. 方法1:将String 变为字符数组,通过修改字符数组 ...

  5. vue2.0变化

    之前有很多的vue知识总结都是围绕1.0版本实现的,下面主要总结一下2.0相对于1.0的一些变化. 组件定义 在vue1.0中,我们有使用vue.extend()来创建组件构造器继而创建组件实例,如下 ...

  6. [转][easyui]右键菜单

    来自:Zephyr.Net开发手册 var $tab = $('#tabs'); var currentTab = $tab.tabs('getSelected'); var titles = wra ...

  7. etcd 命令行(转)

    原文 https://www.cnblogs.com/breg/p/5756558.html 比较重要的配置 -name 节点名称,默认是UUID-data-dir 保存日志和快照的目录,默认为当前工 ...

  8. view之Scroller工具类和GestureDetector的简单用法

    转载:http://ipjmc.iteye.com/blog/1615828 Android里Scroller类是为了实现View平滑滚动的一个Helper类.通常在自定义的View时使用,在View ...

  9. python面向对象 : 继承

    一. 初识继承 继承是一种创建新类的方式,在python中,新建的类可以继承一个或多个父类,父类又可称为基类或超类,新建的类称为派生类或子类. 当我们在定义多个类的时候,发现要用到相同的方法或变量,如 ...

  10. 00002 - echo命令详解

    用于字符串的输出 格式 echo string 使用echo实现更复杂的输出格式控制 1.显示普通字符串: echo "It is a test" 这里的双引号完全可以省略,以下命 ...