Spark实现销量统计
package com.mengyao.examples.spark.core; import java.io.Serializable; import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction; import scala.Tuple2; /**
* 国内乘用车4月、1-4月销量数据统计
* @author mengyao
*
*/
@SuppressWarnings("all")
public class CarSaleStatistics { static class Sale implements Serializable {
private static final long serialVersionUID = -5393067134730174480L;
//排名
private int no;
//车型
private String model;
//车企
private String brand;
//4月销量
private int fourSale;
//1-4月累计销量
private int totalSale;
public Sale(int no, String model, String brand, int fourSale, int totalSale) {
this.no = no;
this.model = model;
this.brand = brand;
this.fourSale = fourSale;
this.totalSale = totalSale;
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getModel() {
return model;
}
public void setModel(String model) {
this.model = model;
}
public String getBrand() {
return brand;
}
public void setBrand(String brand) {
this.brand = brand;
}
public int getFourSale() {
return fourSale;
}
public void setFourSale(int fourSale) {
this.fourSale = fourSale;
}
public int getTotalSale() {
return totalSale;
}
public void setTotalSale(int totalSale) {
this.totalSale = totalSale;
}
@Override
public String toString() {
return no + "\t" + model + "\t" + brand + "\t" + fourSale + "\t" + totalSale;
}
} /**
* 集群模式:spark-submit --class com.mengyao.examples.spark.core.CarSaleStatistics --master yarn --deploy-mode cluster --driver-memory 2048m --executor-memory 1024m --executor-cores 1 --queue default examples-0.0.1-SNAPSHOT.jar /data/carsales_data/2018.4-china-car-sales_volume.txt /data/carsales_data/statistics/
* 本地模式:Run As > Java Application
* @param args [in,out]
*/
public static void main(String[] args) {
SparkConf conf = new SparkConf()
.setAppName(CarSaleStatistics.class.getName());
if (null==args||args.length==0) {
args = new String[]{"./src/main/resources/data/2018.4-china-car-sales_volume.txt", "D:/"};
System.setProperty("hadoop.home.dir", "D:/softs/dev/apache/hadoop-2.7.5");
conf.setMaster("local");
}
JavaSparkContext sc = new JavaSparkContext(conf);
//中国市场合资、国产乘用车4月分销量数据
JavaRDD<String> linesRDD = sc.textFile(args[0]);
//按品牌分组
JavaPairRDD<String, Sale> brandSalesRDD = linesRDD.mapToPair(new PairFunction<String, String, Sale>() {
private static final long serialVersionUID = -3023653638555855696L;
@Override
public Tuple2<String, Sale> call(String line) throws Exception {
String[] fields = line.split("\t");
Sale sale = new Sale(Integer.parseInt(fields[0]), fields[1], fields[2], Integer.parseInt(fields[3]), Integer.parseInt(fields[4]));
return new Tuple2<String, Sale>(sale.getBrand(), sale);
}
});
//同品牌4月总销量、1-4月总销量
JavaPairRDD<String, Sale> brandTotalSalesRDD = brandSalesRDD.reduceByKey(new Function2<Sale, Sale, Sale>() {
private static final long serialVersionUID = 1L;
@Override
public Sale call(Sale item1, Sale item2) throws Exception {
item2.setFourSale(item1.getFourSale()+item2.getFourSale());
item2.setTotalSale(item1.getTotalSale()+item2.getTotalSale());
item2.setModel(item1.getModel()+","+item2.getModel());
return item2;
}
});
//4月份销量排名,转换key为4月销量
JavaPairRDD<Integer, Sale> fourSaleRankRDD = brandTotalSalesRDD.mapToPair(new PairFunction<Tuple2<String,Sale>, Integer, Sale>() {
private static final long serialVersionUID = 2012736852338064223L;
@Override
public Tuple2<Integer, Sale> call(Tuple2<String, Sale> t) throws Exception {
return new Tuple2<Integer, Sale>(t._2.getFourSale(), t._2);
}
});
//4月份销量排名降序
JavaPairRDD<Integer, Sale> fourSaleRankDescRDD = fourSaleRankRDD.sortByKey(false);
fourSaleRankDescRDD.foreach(new VoidFunction<Tuple2<Integer,Sale>>() {
private static final long serialVersionUID = -8110929872210046547L;
@Override
public void call(Tuple2<Integer, Sale> t) throws Exception {
Sale sale = t._2;
System.out.println("==== 4月份销量排名:"+sale.getBrand()+" = "+sale.getFourSale());
}
});
fourSaleRankDescRDD.saveAsNewAPIHadoopFile(args[1]+"fourSaleRank", NullWritable.class, Text.class, TextOutputFormat.class); //1-4月份累计销量排名,转换key为1-4月销量
JavaPairRDD<Integer, Sale> totalSaleRankRDD = brandTotalSalesRDD.mapToPair(new PairFunction<Tuple2<String,Sale>, Integer, Sale>() {
private static final long serialVersionUID = 2012736852338064223L;
@Override
public Tuple2<Integer, Sale> call(Tuple2<String, Sale> t) throws Exception {
return new Tuple2<Integer, Sale>(t._2.getTotalSale(), t._2);
}
});
//1-4月份累计销量排名降序
JavaPairRDD<Integer, Sale> totalSaleRankDescRDD = totalSaleRankRDD.sortByKey(false);
totalSaleRankDescRDD.foreach(new VoidFunction<Tuple2<Integer,Sale>>() {
private static final long serialVersionUID = -8110929872210046547L;
@Override
public void call(Tuple2<Integer, Sale> t) throws Exception {
Sale sale = t._2;
System.out.println("==== 1-4月份累计销量排名:"+sale.getBrand()+" = "+sale.getTotalSale());
}
});
fourSaleRankDescRDD.saveAsNewAPIHadoopFile(args[1]+"oneTofourSaleRank", NullWritable.class, Text.class, TextOutputFormat.class);
//关闭
sc.close();
} }
查看HDP Spark的HistoryServer(IP,18081),如下图表示成功:

Spark实现销量统计的更多相关文章
- Spark MLib 基本统计汇总 2
4. 假设检验 基础回顾: 假设检验,用于判断一个结果是否在统计上是显著的.这个结果是否有机会发生. 显著性检验 原假设与备择假设 常把一个要检验的假设记作 H0,称为原假设(或零假设) (null ...
- Spark MLib 基本统计汇总 1
1. 概括统计 summary statistics MLlib支持RDD[Vector]列式的概括统计,它通过调用 Statistics 的 colStats方法实现. colStats返回一个 ...
- Spark Streaming 002 统计单词的例子
1.准备 事先在hdfs上创建两个目录: 保存上传数据的目录:hdfs://alamps:9000/library/SparkStreaming/data checkpoint的目录:hdfs://a ...
- [Spark Core] Spark 实现气温统计
0. 说明 聚合气温数据,聚合出 MAX . MIN . AVG 1. Spark Shell 实现 1.1 MAX 分步实现 # 加载文档 val rdd1 = sc.textFile(" ...
- spark 累加历史 + 统计全部 + 行转列
spark 累加历史主要用到了窗口函数,而进行全部统计,则需要用到rollup函数 1 应用场景: 1.我们需要统计用户的总使用时长(累加历史) 2.前台展现页面需要对多个维度进行查询,如:产品.地 ...
- spark 省份次数统计实例
//统计access.log文件里面IP地址对应的省份,并把结果存入到mysql package access1 import java.sql.DriverManager import org.ap ...
- spark复习笔记(3):使用spark实现单词统计
wordcount是spark入门级的demo,不难但是很有趣.接下来我用命令行.scala.Java和python这三种语言来实现单词统计. 一.使用命令行实现单词的统计 1.首先touch一个a. ...
- spark jdk8 单词统计示例
在github上有spark-java8 实例地址: https://github.com/ypriverol/spark-java8 https://github.com/ihr/java8-spa ...
- Spark入门案例 - 统计单词个数 / wordcount
Scala版 import org.apache.spark.{SparkConf, SparkContext} object WordCountScala { def main(args: Arra ...
随机推荐
- 为什么 MongoDB (索引)使用B-树而 Mysql 使用 B+树
B-树由来 定义:B-树是一类树,包括B-树.B+树.B*树等,是一棵自平衡的搜索树,它类似普通的平衡二叉树,不同的一点是B-树允许每个节点有更多的子节点.B-树是专门为外部存储器设计的,如磁盘,它对 ...
- jsp当做第二个servlet request的生命周期 请求 响应 不管中间经历多少个servlet 只要最后一个serlvt执行后 则生命周期结束 request的域消失
jsp当做第二个servlet request的生命周期 请求 响应 不管中间经历多少个servlet 只要最后一个serlvt执行后 则生命周期结束 request的域消失
- Python字符串的简单操作
数据的操作 字符串的一些常用操作: 1 1 #!/usr/bin/env python 2 # #coding=utf-8 3 # 4 # test='hello world' 5 # print(t ...
- [CF1095F]Make It Connected
题目大意:给你$n(n\leqslant2\times10^5)$个点和$m(m\leqslant2\times10^5)$条边,第$i$个点点权为$a_i$.连接$u,v$两个点的代价为$a_u+a ...
- [洛谷P3346][ZJOI2015]诸神眷顾的幻想乡
题目大意:给你一棵$n$个点的树,最多有$20$个叶子节点,问共有几个不同的子串 题解:广义$SAM$,对每个叶子节点深搜一次,每个节点的$lst$设为这个节点当时的父亲,这样就可以时建出来的$SAM ...
- 分享几款常用的API/文档浏览器
1.Dash 支持平台:Mac iOS 官网:https://kapeli.com/dash 2.Zeal 支持平台:Linux Windows 官网:https://zealdocs.org/ G ...
- React注释
React中注释有以下三种 var content = ( <Nav> {/* 一般注释, 用 {} 包围 */} <Person /* 多 行 注释 */ name={window ...
- android getpost代码
GetPostUtil public class GetPostUtil { /** * 向指定URL发送GET方法的请求 * * @param url * 发送请求的URL * @param par ...
- 利用caffe的solverstate断点训练
你可以从系统 /tmp 文件夹获取,名字是什么 caffe.ubuntu.username.log.INFO.....之类 ====================================== ...
- c#知识梳理
转:http://www.cnblogs.com/zhouzhou-aspnet/articles/2591596.html 本文是一个菜鸟所写,本文面向的人群就是像我这样的小菜鸟,工作一年也辛辛苦苦 ...