2019CCPC网络预选赛 1003 K-th occurrence 后缀自动机 + 二分 + 主席树
题意:给你一个长度为n的字符串,有m次询问,每次询问l到r的子串在原串中第k次出现的位置,如果没有输出-1。n, m均为1e5级别。
思路:后悔没学后缀数组QAQ,其实只要学过后缀数组这个题还是比较好想的。这个问题可以转化为有多少个后缀和后缀l的lcp长度大于等于r - l + 1。我们知道,在后缀数组中,两个后缀i, j的lcp是min(height[rank[j] + 1], height[rank[j] + 2], ....height[rank[i]])。那么,我们可以二分出一个最靠左的位置(假设这个位置是p),这个位置到rank[l]的height都是 >= r - l + 1的,即从p到rank[l]这些位置的后缀与l的lcp长度都是大于等于r - l + 1的。rank[l]的右边同理可得。那么,我们就可以知道有哪些后缀可能是答案了。那么还有一个问题,怎么知道它们中第k个位置呢?这个就是一个静态区间第k大问题,我们把sa[i]按顺序插入到主席树中,然后再二分出的两个端点之间询问第k大的位置即可。
代码(后缀数组板子copy网上的QAQ):
#include <bits/stdc++.h>
using namespace std;
const int maxn = 100010;
char s[maxn];
int n, tot;
int root[maxn];
struct node {
int sum;
int lc, rc;
};
node tr[maxn * 50];
struct SA {
int sa[maxn], x[maxn], y[maxn], c[maxn];
int rank[maxn], height[maxn], h[maxn];
int f[maxn][18]; void build_sa(int m) {
for (int i = 0; i <= m; i++) c[i] = 0;
for (int i=1; i<=n; ++i) ++c[x[i]=s[i]];
//c数组是桶
//x[i]是第i个元素的第一关键字
for (int i=2; i<=m; ++i) c[i]+=c[i-1];
//做c的前缀和,我们就可以得出每个关键字最多是在第几名
for (int i=n; i>=1; --i) sa[c[x[i]]--]=i;
for (int k=1; k<=n; k<<=1) {
int num=0;
for (int i=n-k+1; i<=n; ++i) y[++num]=i;
//y[i]表示第二关键字排名为i的数,第一关键字的位置
//第n-k+1到第n位是没有第二关键字的 所以排名在最前面
for (int i=1; i<=n; ++i) if (sa[i]>k) y[++num]=sa[i]-k;
//排名为i的数 在数组中是否在第k位以后
//如果满足(sa[i]>k) 那么它可以作为别人的第二关键字,就把它的第一关键字的位置添加进y就行了
//所以i枚举的是第二关键字的排名,第二关键字靠前的先入队
for (int i=1; i<=m; ++i) c[i]=0;
//初始化c桶
for (int i=1; i<=n; ++i) ++c[x[i]];
//因为上一次循环已经算出了这次的第一关键字 所以直接加就行了
for (int i=2; i<=m; ++i) c[i]+=c[i-1]; //第一关键字排名为1~i的数有多少个
for (int i=n; i>=1; --i) sa[c[x[y[i]]]--]=y[i],y[i]=0;
//因为y的顺序是按照第二关键字的顺序来排的
//第二关键字靠后的,在同一个第一关键字桶中排名越靠后
//基数排序
swap(x,y);
//这里不用想太多,因为要生成新的x时要用到旧的,就把旧的复制下来,没别的意思
x[sa[1]]=1;
num=1;
for (int i=2; i<=n; ++i)
x[sa[i]]=(y[sa[i]]==y[sa[i-1]] && y[sa[i]+k]==y[sa[i-1]+k]) ? num : ++num;
//因为sa[i]已经排好序了,所以可以按排名枚举,生成下一次的第一关键字
if (num==n) break;
m=num;
//这里就不用那个122了,因为都有新的编号了
}
} void get_height() {
int k=0;
for (int i=1; i<=n; ++i) rank[sa[i]]=i;
for (int i=1; i<=n; ++i) {
if (rank[i]==1) continue;//第一名height为0
if (k) --k;//h[i]>=h[i-1]-1;
int j=sa[rank[i]-1];
while (j+k<=n && i+k<=n && s[i+k]==s[j+k]) ++k;
height[rank[i]]=k;//h[i]=height[rk[i]];
}
for (int i = 1; i <= n; i++) h[i] = height[rank[i]];
} void build_st() {
for (int i = 1; i <= n; i++)
f[i][0] = height[i];
int t = log(n) / log(2) + 1;
for (int j = 1; j < t; j++) {
for (int i = 1; i <= n - (1 << j) + 1; i++)
f[i][j] = min(f[i][j - 1], f[i + (1 << (j - 1))][j - 1]);
}
} int query(int l, int r) {
if(l > r) return 0;
int k = log(r - l + 1) / log(2);
return min(f[l][k], f[r - (1 << k) + 1][k]);
}
}; SA solve; int build(int l, int r) {
int p = ++tot;
if (l == r) {
tr[p].sum = 0;
tr[p].lc = tr[p].rc = 0;
return p;
}
int mid = (l + r) >> 1;
tr[p].lc = build(l, mid);
tr[p].rc = build(mid + 1, r);
tr[p].sum = tr[tr[p].lc].sum + tr[tr[p].rc].sum;
return p;
}
int insert(int now, int l, int r, int x, int val) {
int p = ++tot;
tr[p] = tr[now];
if(l == r) {
tr[p].sum = 1;
return p;
}
int mid = (l + r) >> 1;
if(x <= mid) tr[p].lc = insert(tr[now].lc, l, mid, x, val);
else tr[p].rc = insert(tr[now].rc, mid + 1, r, x, val);
tr[p].sum = tr[tr[p].lc].sum + tr[tr[p].rc].sum;
return p;
}
int query(int lnow, int rnow, int l, int r, int remain) {
if(l > r) return 0;
if(l == r) {
return l;
}
int mid = (l + r) >> 1;
int tmp = tr[tr[rnow].lc].sum - tr[tr[lnow].lc].sum;
if(tmp >= remain) return query(tr[lnow].lc, tr[rnow].lc, l, mid, remain);
else return query(tr[lnow].rc, tr[rnow].rc, mid + 1, r, remain - tmp);
}
int main() {
int T, m, l, r, k, ql, qr;
// freopen("cin.txt", "r", stdin);
// freopen("cout.txt", "w", stdout);
scanf("%d", &T);
while(T--) {
tot = 0;
scanf("%d%d", &n, &m);
scanf("%s", s + 1);
for (int i = 1; i <= n; i++)
s[i] -= ('a' - 1);
solve.build_sa(30);
solve.get_height();
solve.build_st();
root[0] = build(1, n);
for (int i = 1; i <= n; i++) {
root[i] = insert(root[i - 1], 1, n, solve.sa[i], 1);
}
for (int i = 1; i <= m; i++) {
scanf("%d%d%d", &l, &r, &k);
int p = solve.rank[l];
int L = 1, R = p;
while(L < R) {
int mid = (L + R) >> 1;
if(solve.query(mid + 1, p) < r - l + 1) L = mid + 1;
else R = mid;
}
ql = L;
L = p, R = n;
while(L < R) {
int mid = (L + R + 1) >> 1;
if(solve.query(p + 1, mid) < r - l + 1) R = mid - 1;
else L = mid;
}
qr = R;
if(qr - ql + 1 < k) printf("-1\n");
else printf("%d\n", query(root[ql - 1], root[qr], 1, n, k));
}
} }
2019CCPC网络预选赛 1003 K-th occurrence 后缀自动机 + 二分 + 主席树的更多相关文章
- [HEOI2016/TJOI2016]字符串(后缀数组+二分+主席树/后缀自动机+倍增+线段树合并)
后缀数组解法: 先二分最长前缀长度 \(len\),然后从 \(rnk[c]\) 向左右二分 \(l\) 和 \(r\) 使 \([l,r]\) 的 \(height\geq len\),然后在主席树 ...
- 【BZOJ-4556】字符串 后缀数组+二分+主席树 / 后缀自动机+线段树合并+二分
4556: [Tjoi2016&Heoi2016]字符串 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 657 Solved: 274[Su ...
- 【BZOJ4556】[Tjoi2016&Heoi2016]字符串 后缀数组+二分+主席树+RMQ
[BZOJ4556][Tjoi2016&Heoi2016]字符串 Description 佳媛姐姐过生日的时候,她的小伙伴从某东上买了一个生日礼物.生日礼物放在一个神奇的箱子中.箱子外边写了一 ...
- 2019CCPC网络预选赛 八道签到题题解
目录 2019中国大学生程序设计竞赛(CCPC) - 网络选拔赛 6702 & 6703 array 6704 K-th occurrence 6705 path 6706 huntian o ...
- HDU-6704 K-th occurrence (后缀自动机father树上倍增建权值线段树合并)
layout: post title: HDU-6704 K-th occurrence (后缀自动机father树上倍增建权值线段树合并) author: "luowentaoaa&quo ...
- 【BZOJ4556】字符串(后缀数组,主席树)
[BZOJ4556]字符串(后缀数组,主席树) 题面 BZOJ 题解 注意看题: 要求的是\([a,b]\)的子串和[c,d]的\(lcp\)的最大值 先来一下暴力吧 求出\(SA\)之后 暴力枚举\ ...
- 【BZOJ5304】[HAOI2018]字串覆盖(后缀数组,主席树,倍增)
[BZOJ5304][HAOI2018]字串覆盖(后缀数组,主席树,倍增) 题面 BZOJ 洛谷 题解 贪心的想法是从左往右,能选就选.这个显然是正确的. 题目的数据范围很好的说明了要对于询问分开进行 ...
- 【CF666E】Forensic Examination(后缀自动机,线段树合并)
[CF666E]Forensic Examination(后缀自动机,线段树合并) 题面 洛谷 CF 翻译: 给定一个串\(S\)和若干个串\(T_i\) 每次询问\(S[pl..pr]\)在\(T_ ...
- 【BZOJ3413】匹配(后缀自动机,线段树合并)
[BZOJ3413]匹配(后缀自动机,线段树合并) 题面 BZOJ 题解 很好的一道题目. 做一个转化,匹配的次数显然就是在可以匹配的区间中,每个前缀的出现次数之和. 首先是空前缀的出现次数,意味着你 ...
随机推荐
- Idea配置注释
Idea配置注释 方法注释 点击+号 选择2 template Group 自己随便填个有意义的name(如图的mn就是我填写的) 点击你上步填写的name (我的是mn),然后点击+选择1 Live ...
- asp.net中的ORA-12154: TNS: 无法解析指定的连接标识符
本机PL/SQL能正常连接,但是asp.net连接有问题. 临时解决方案: <add key="ConnectString" value="Data Source= ...
- js不区分大小写匹配并代码高亮,且不改变原来文本大小写格式
//高亮字符串 string: 需要处理的字符串,keyword:键盘输入的内容 function heightLight(string, keyword) { var reg = new RegEx ...
- 理解json和jsonp的定义和区别以及如何实际使用
(一)什么是跨域请求? 首先要理解什么是跨域? 跨域是指一个域下的文档或脚本试图去请求另一个域下的资源,这里跨域是广义的. 其实我们通常所说的跨域是狭义的,是由浏览器同源策略限制的一类请求场景. 常见 ...
- Mybatis入门之MyBatis基础
一.MyBatis概述 1.ORM模型简介 ORM:对象关系映射(Object Relation Mapping) 1)传统JDBC程序的设计缺陷(实际项目不使用) a.大量配置信息硬编码 b.大量的 ...
- Rust SDL2配置
github地址 https://github.com/Rust-SDL2/rust-sdl2 clone或下载这个项目 本文使用的是MSVC版本 上面链接页面搜Windows (MSVC) 得知需要 ...
- SQL查询返回去除重复数据的结果集
方法一: select * from tablename where id in (select id from tablename group by id havin ...
- Maven系列学习(一)Maven基本知识
Maven 简介 1.Maven主要是基于Java平台的项目构建,依赖管理和项目信息 2.Maven是优秀的构建工具,跨平台,消除构建的重复,抽象了一个完整的构建生命周期模型,标准化构建过程 3.管理 ...
- Vue-实现简单拖拽(自定义属性)
<!DOCTYPE html><html lang="en"><head><meta charset="UTF-8"& ...
- 洛谷P3379 【模板】最近公共祖先(LCA)——LCA
给一手链接 https://www.luogu.com.cn/problem/P3379 算是lca的模板吧 #include<cstdio> #include<cstring> ...