[Everyday Mathematics]20150104
设 $a>0$, $$\bex x_1=1,\quad x_{n+1}=x_n+an\prod_{i=1}^n x_i^{-\frac{1}{n}}. \eex$$ 试证: $$\bex \vlm{n}x_n=\infty,\quad \vlm{n}\frac{x_n}{\ln n}=\infty. \eex$$
[Everyday Mathematics]20150104的更多相关文章
- [Everyday Mathematics]20150304
证明: $$\bex \frac{2}{\pi}\int_0^\infty \frac{1-\cos 1\cos \lm-\lm \sin 1\sin \lm}{1-\lm^2}\cos \lm x\ ...
- [Everyday Mathematics]20150303
设 $f$ 是 $\bbR$ 上的 $T$ - 周期函数, 试证: $$\bex \int_T^\infty\frac{f(x)}{x}\rd x\mbox{ 收敛 } \ra \int_0^T f( ...
- [Everyday Mathematics]20150302
$$\bex |p|<\frac{1}{2}\ra \int_0^\infty \sex{\frac{x^p-x^{-p}}{1-x}}^2\rd x =2(1-2p\pi \cot 2p\pi ...
- [Everyday Mathematics]20150301
设 $f(x)$ 在 $[-1,1]$ 上有任意阶导数, $f^{(n)}(0)=0$, 其中 $n$ 是任意正整数, 且存在 $C>0$, $$\bex |f^{(n)}(x)|\leq C^ ...
- [Everyday Mathematics]20150228
试证: $$\bex \int_0^\infty \sin\sex{x^3+\frac{\pi}{4}}\rd x =\frac{\sqrt{6}+\sqrt{2}}{4}\int_0^\infty ...
- [Everyday Mathematics]20150227
(Marden's Theorem) 设 $p(z)$ 是三次复系数多项式, 其三个根 $z_1,z_2,z_3$ 不共线; 再设 $T$ 是以 $z_1,z_2,z_3$ 为顶点的三角形. 则存在唯 ...
- [Everyday Mathematics]20150226
设 $z\in\bbC$ 适合 $|z+1|>2$. 试证: $$\bex |z^3+1|>1. \eex$$
- [Everyday Mathematics]20150225
设 $f:\bbR\to\bbR$ 二次可微, 适合 $f(0)=0$. 试证: $$\bex \exists\ \xi\in\sex{-\frac{\pi}{2},\frac{\pi}{2}},\s ...
- [Everyday Mathematics]20150224
设 $A,B$ 是 $n$ 阶实对称矩阵, 它们的特征值 $>1$. 试证: $AB$ 的特征值的绝对值 $>1$.
随机推荐
- 实战案例--Grunt构建Web程序
GruntJS构建Web程序.使用Gruntjs来搭建一个前端项目,然后使用grunt合并,压缩JS文件,熟练了node.js安装和grunt.js安装后,接下来来实战一个案例,案例是根据snandy ...
- Hadoop-eclipse-plugin插件安装
Hadoop-eclipse-plugin插件安装 学习Hadoop有一段时间了,以前每次的做法都是先在win下用eclipse写好Mapreduce程序,然后打成jar文件,上传到linux下用ha ...
- BZOJ 3203 sdoi 2013 保护出题人
由于样例解释很清晰,所以很容易得到以下结论: 1.每一关都是独立的,且僵尸的相对位置不会变 2.每一关的攻击力=Max(sum(i)/dis(i)) 其实sum(i)是僵尸攻击力的前缀和,dis(i) ...
- 什么叫非阻塞io
而一个NIO的实现会有所不同,下面是一个简单的例子: ByteBuffer buffer = ByteBuffer.allocate(48); int bytesRead = inChannel.re ...
- Tomcat下的一些配置
1. JAVA虚拟机性能优化,修改bin下的 catalina.sh/bat rem ----- Execute The Requested Command -------------------- ...
- 4、JPA table主键生成策略(在JPA中table策略是首推!!!)
用 table 来生成主键详解 它是在不影响性能情况下,通用性最强的 JPA 主键生成器.这种方法生成主键的策略可以适用于任何数据库,不必担心不同数据库不兼容造成的问题. initialValue不起 ...
- 写出完美论文的十个技巧10 Tips for Writing the Perfect Paper
10 Tips for Writing the Perfect Paper Like a gourmet meal or an old master painting, the perfect col ...
- 解决eclipse maven 项目重新下载包这个问题
问题:eclipse项目使用maven下载依赖包,但是有时候断网什么来着就不会自动下载了,挺蛋疼了. 所以,需要我们重新更新项目下载呢. 首先是要在maven的conf文件下setting.xml配置 ...
- [UESTC1059]秋实大哥与小朋友(线段树, 离散化)
题目链接:http://acm.uestc.edu.cn/#/problem/show/1059 普通线段树+离散化,关键是……离散化后建树和查询都要按照基本法!!!RE了不知道多少次………………我真 ...
- Windows下tuxedo配置
setenv.cmd rem (c) 2003 BEA Systems, Inc. All Rights Reserved. rem Copyright (c) 2000 BEA Systems, I ...