前言

本文来自Prometheus官网手册1Prometheus官网手册2 和 Prometheus简介

说明

Prometheus从根本上存储的所有数据都是时间序列: 具有时间戳的数据流只属于单个度量指标和该度量指标下的多个标签维度。除了存储时间序列数据外,Prometheus还可以生成临时派生的时间序列作为查询的结果。

metrics和labels(度量指标名称和标签)

每一个时间序列数据由metric度量指标名称和它的标签labels键值对集合唯一确定。

这个metric度量指标名称指定监控目标系统的测量特征(如:http_requests_total- 接收http请求的总计数)。

注意:冒号保留用于用户定义的录制规则。 它们不应被exporter或直接仪表使用。

labbels开启了Prometheus的多维数据模型:对于相同的度量名称,通过不同标签列表的结合, 会形成特定的度量维度实例。(例如:所有包含度量名称为/api/tracks的http请求,打上method=POST的标签,则形成了具体的http请求)。这个查询语言在这些度量和标签列表的基础上进行过滤和聚合。改变任何度量上的任何标签值,则会形成新的时间序列图。

metric度量指标可能包含ASCII字母、数字、下划线和冒号,他必须配正则表达式[a-zA-Z_:][a-zA-Z0-9_:]*。

label标签名称可以包含ASCII字母、数字和下划线。它们必须匹配正则表达式[a-zA-Z_][a-zA-Z0-9_]*

带有_下划线的标签名称被保留内部使用,标签labels值包含任意的Unicode码。

具体详见metrics和labels命名最佳实践

样本

样本形成了实际的时间序列数据列表。每个采样值包括:

  • 一个64位的浮点值
  • 一个精确到毫秒级的时间戳

Notation(符号)

表示一个度量指标和一组键值对标签,需要使用以下符号:

[metric name]{[label name]=[label value], ...}

例如,度量指标名称是api_http_requests_total, 标签为method="POST", handler="/messages" 的示例如下所示:

api_http_requests_total{method="POST", handler="/messages"}

这些命名和OpenTSDB使用方法是一样的。

度量指标类型

Prometheus客户端库提供了四种核心的metrics类型,这四种类型目前仅在客户端库和wire协议中区分。Prometheus服务还没有充分利用这些类型,将来可能会发生改变。

Counter(计数器)

counter 是表示单个单调递增计数器的累积度量,其值只能在重启时增加或重置为零。 例如,您可以使用计数器来表示所服务的请求数,已完成的任务或错误。

不要使用计数器来暴露可能减少的值。例如,不要使用计数器来处理当前正在运行的进程数,而是使用gauge。

客户端使用计数器的文档:

Gauge(测量器)

gauge是一个度量指标,它表示一个既可以递增, 又可以递减的值。

测量器主要测量类似于温度、当前内存使用量等,也可以统计当前服务运行随时增加或者减少的Goroutines数量

客户端使用计量器的文档:

Histogram(柱状图)

直方图对观察结果进行采样(通常是请求持续时间或响应大小等),并将其计入可配置存储桶中。它还提供所有观察值的总和。基本度量标准名称为<basename>的直方图在scrape期间显示多个时间序列:

  • 暴露的观察桶的累积计数器:<basename>_bucket{le="<upper inclusive bound>"}
  • 所有观测值的总和:<basename>_sum
  • 已观察到的事件数:<basename>_count,和<basename>_bucket{le="+Inf"}相同

使用histogram_quantile函数, 计算直方图或者是直方图聚合计算的分位数阈值。 一个直方图计算Apdex值也是合适的, 当在buckets上操作时,记住直方图是累计的。详见直方图和总结

客户库的直方图使用文档:

Summary

类似histogram柱状图,summary是采样点分位图统计(通常是请求持续时间和响应大小等)。虽然它还提供观察的总数和所有观测值的总和,但它在滑动时间窗口上计算可配置的分位数。基本度量标准名称<basename>summary在scrape期间公开了多个时间序列:

  • 流φ-quantiles (0 ≤ φ ≤ 1), 显示为<basename>{quantiles="[φ]"}
  • <basename>_sum, 是指所有观察值的总和
  • <basename>_count, 是指已观察到的事件计数值

有关φ-分位数,Summary用法和histogram图差异的详细说明,详见histogram和summaries

有关summaries的客户端使用文档:

任务与实例

就Prometheus而言,pull拉取采样点的端点服务称之为instance,通常对应一个过程(实例)。具有相同目的的instance,例如,为可伸缩性或可靠性而复制的流程称为作业,构成了一个job。

例如, 一个被称作api-server的任务有四个相同的实例。

job: api-server
instance :1.2.3.4:
instance :1.2.3.4:
instance :5.6.7.8:
instance :5.6.7.8: 

自动化生成的标签和时间序列

当Prometheus拉取一个目标,会自动地把两个标签添加到度量名称的标签列表中,分别是:

job: 目标所属的配置任务名称。
instance: 被抓取的目标网址的一部分: host:port

如果以上两个标签二者之一存在于采样点中,这个取决于honor_labels配置选项。详见文档

对于每个采样点所在服务instance,Prometheus都会存储以下的度量指标采样点:

up{job="[job-name]", instance="instance-id"}:,表示采样点所在服务健康;,标识抓取失败
scrape_duration_seconds{job="[job-name]", instance="[instance-id]"}: 抓取的持续时间
scrape_samples_post_metric_relabeling{job="<job-name>", instance="<instance-id>"}: 应用度量标准重新标记后剩余的样本数。
scrape_samples_scraped{job="<job-name>", instance="<instance-id>"}: 目标暴露的样本数量。

运行时间序列对于实例可用性监视很有用。

Prometheus学习系列(三)之Prometheus 概念:数据模型、metric类型、任务、实例的更多相关文章

  1. prometheus学习系列十一: Prometheus和AlertManager的高可用

    前面的系列中, prometheus和alertmanager都是单机部署的,会有单机宕机导致系统不可用情况发生.本文主要介绍下prometheus和alertmanager的高可用方案. 服务的高可 ...

  2. prometheus学习系列十一: Prometheus 安全

    prometheus安全 我们这里说的安全主要是基本认证和https2种, 目前这2种安全在prometheus中都没有的, 需要借助第三方软件实现, 这里以nginx为例. 基本认证 配置基本认证 ...

  3. prometheus学习系列十一: Prometheus pushgateway的使用

    由于网络问题或者安全问题,可能我们的数据无法直接暴露出一个entrypoint 给prometheus采集. 这个时候可能就需要一个pushgateway来作为中间者完成中转工作.  promethe ...

  4. prometheus学习系列九: Prometheus AlertManager使用

    在Prometheus的报警系统中,是分为2个部分的, 规则是配置是在prometheus中的, prometheus组件完成报警推送给alertmanager的, alertmanager然后管理这 ...

  5. prometheus学习系列五: Prometheus配置文件

    在prometheus监控系统,prometheus的职责是采集,查询和存储和推送报警到alertmanager.本文主要介绍下prometheus的配置文件. 全局配置文件简介 默认配置文件 [ro ...

  6. prometheus学习系列三:node_exporter安装部署

    node_exporter简介 node_exporter安装部署 [root@node00 ~]# cd /usr/src/ [root@node00 src]# wget https://gith ...

  7. prometheus学习系列四: Prometheus详述

    数据模型 Prometheus 是将所有数据存为时序数据. 每个时序数据是由指标名称和可选的键值对(称之为标签)唯一标识. 度量类型 counter: 单调递增的计数器,如果标识已经服务的请求数量可以 ...

  8. prometheus学习系列十一: Prometheus exporter详解

    exporter详解 前面的系列中,我们在主机上面安装了node_exporter程序,该程序对外暴露一个用于获取当前监控样本数据的http的访问地址, 这个的一个程序成为exporter,Expor ...

  9. prometheus学习系列十一: Prometheus 采集器的编写

    在前面的文章已经写了官方的几个exporter的使用了. 在实际使用环境中,我们可能需要收集一些自定义的数据, 这个时候我们一般是需要自己编写采集器的. 快速入门编写一个入门的demo 编写代码 fr ...

  10. prometheus学习系列十一: Prometheus 报警规则配置

    prometheus监控系统的的报警规则是在prometheus这个组件完成配置的. prometheus支持2种类型的规则,记录规则和报警规则, 记录规则主要是为了简写报警规则和提高规则复用的, 报 ...

随机推荐

  1. 外键(foreign key)的使用及其优缺点

    如果公共关键字在一个关系中是主关键字,那么这个公共关键字被称为另一个关系的外键.由此可见,外键表示了两个关系之间的相关联系.以另一个关系的外键作主关键字的表被称为主表,具有此外键的表被称为主表的从表. ...

  2. 复选框、单选框样式自定义(https://www.cnblogs.com/freedom-feng/p/11346396.html)

    复选框.单选框样式自定义(https://www.cnblogs.com/freedom-feng/p/11346396.html)复选框html内容如下:<input type="c ...

  3. #华为云·寻找黑马程序员# 如何实现一个优雅的Python的Json序列化库

    在Python的世界里,将一个对象以json格式进行序列化或反序列化一直是一个问题.Python标准库里面提供了json序列化的工具,我们可以简单的用json.dumps来将一个对象序列化.但是这种序 ...

  4. Asp.net Core 3.0 Identity 使用smtp账户确认和密码恢复

    当新建一个core项目后,使用identity基架后,确认邮件出现了错误,并不能正常使用. 建立文档在这里 https://docs.microsoft.com/zh-cn/aspnet/core/s ...

  5. windows下利用iis建立网站网站并实现局域共享

    博客园 首页 新随笔 联系 管理 订阅 随笔- 54  文章- 9  评论- 0  Windows下利用IIS建立网站并实现局域网共享 https://blog.csdn.net/qq_4148541 ...

  6. 使用正则表达式实现(加减乘除)计算器(C#实现)

    起因:公司领导要求做一款基于行业规范的计算器, 然后需要用户输入一些数据,然后根据用户输入的数据满足某些条件后,再根据用户输入的条件二进行加减乘除运算.;-) 期间因为查找规范等形成数据表的某一列是带 ...

  7. Mybatis 报错 java.lang.IllegalArgumentException: Result Maps collection does not contain value for java.lang.Inte

    like ‘%java.lang.IllegalArgumentException: Result Maps collection does not contain value for java.la ...

  8. linux—netstat

    netstat--option -a: 列出所有端口,监听的没有监听的     -t: 显示tcp相关的选项 -u: 显示udp相关的选项 -l: 仅仅显示监听选项 -p:  显示与连接有关的程序名和 ...

  9. 如何在Tomcat服务器配置CGI运行Python

    想通过请求触发部署在tomcat上的非java应用程序,需要用到Common Gateway Interface(CGI).Tomcat提供了Servlet CGI支持. 修改web.xml web. ...

  10. 多个datasource的配置与实现原理

          一般情况下,一个项目中只会有一个datasource,但是在某些情况.或者业务需求的情况下会出现一个项目有多个datasource的情况,当满足一定条件的时候,对数据库的操作就会从一个一个 ...