Transformer —— attention is all you need
https://www.cnblogs.com/rucwxb/p/10277217.html
Transformer —— attention is all you need
Transformer模型是2018年5月提出的,可以替代传统RNN和CNN的一种新的架构,用来实现机器翻译,论文名称是attention is all you need。无论是RNN还是CNN,在处理NLP任务时都有缺陷。CNN是其先天的卷积操作不很适合序列化的文本,RNN是其没有并行化,很容易超出内存限制(比如50tokens长度的句子就会占据很大的内存)。
下面左图是transformer模型一个结构,分成左边Nx框框的encoder和右边Nx框框的decoder,相较于RNN+attention常见的encoder-decoder之间的attention(上边的一个橙色框),还多出encoder和decoder内部的self-attention(下边的两个橙色框)。每个attention都有multi-head特征。最后,通过position encoding加入没考虑过的位置信息。 下面从multi-head attention,self-attention, position encoding几个角度介绍。
multi-head attention:
将一个词的vector切分成h个维度,求attention相似度时每个h维度计算。由于单词映射在高维空间作为向量形式,每一维空间都可以学到不同的特征,相邻空间所学结果更相似,相较于全体空间放到一起对应更加合理。比如对于vector-size=512的词向量,取h=8,每64个空间做一个attention,学到结果更细化。
self-attention:
每个词位的词都可以无视方向和距离,有机会直接和句子中的每个词encoding。比如上面右图这个句子,每个单词和同句其他单词之间都有一条边作为联系,边的颜色越深表明联系越强,而一般意义模糊的词语所连的边都比较深。比如:law,application,missing,opinion。。。
position encoding:
因为transformer既没有RNN的recurrence也没有CNN的convolution,但序列顺序信息很重要,比如你欠我100万明天要还和我欠你100万明天要还的含义截然不同。。。 transformer计算token的位置信息这里使用正弦波↓,类似模拟信号传播周期性变化。这样的循环函数可以一定程度上增加模型的泛化能力。
但BERT直接训练一个position embedding来保留位置信息,每个位置随机初始化一个向量,加入模型训练,最后就得到一个包含位置信息的embedding(简单粗暴。。),最后这个position embedding和word embedding的结合方式上,BERT选择直接拼接。
Transformer —— attention is all you need的更多相关文章
- Attention & Transformer
Attention & Transformer seq2seq; attention; self-attention; transformer; 1 注意力机制在NLP上的发展 Seq2Seq ...
- Paper Reading - Attention Is All You Need ( NIPS 2017 ) ★
Link of the Paper: https://arxiv.org/abs/1706.03762 Motivation: The inherently sequential nature of ...
- [NLP] REFORMER: THE EFFICIENT TRANSFORMER
1.现状 (1) 模型层数加深 (2) 模型参数量变大 (3) 难以训练 (4) 难以fine-tune 2. 单层参数量和占用内存分析 层 参数设置 参数量与占用内存 1 layer 0.5Bill ...
- (转)How Transformers Work --- The Neural Network used by Open AI and DeepMind
How Transformers Work --- The Neural Network used by Open AI and DeepMind Original English Version l ...
- 文本建模、文本分类相关开源项目推荐(Pytorch实现)
Awesome-Repositories-for-Text-Modeling repo paper miracleyoo/DPCNN-TextCNN-Pytorch-Inception Deep Py ...
- 【NLP】彻底搞懂BERT
# 好久没更新博客了,有时候随手在本上写写,或者Evernote上记记,零零散散的笔记带来零零散散的记忆o(╥﹏╥)o..还是整理到博客上比较有整体性,也方便查阅~ 自google在2018年10月底 ...
- CVPR2020|3D-VID:基于LiDar Video信息的3D目标检测框架
作者:蒋天园 Date:2020-04-18 来源:3D-VID:基于LiDar Video信息的3D目标检测框架|CVPR2020 Brief paper地址:https://arxiv.org/p ...
- ACNet: 特别的想法,腾讯提出结合注意力卷积的二叉神经树进行细粒度分类 | CVPR 2020
论文提出了结合注意力卷积的二叉神经树进行弱监督的细粒度分类,在树结构的边上结合了注意力卷积操作,在每个节点使用路由函数来定义从根节点到叶子节点的计算路径,结合所有叶子节点的预测值进行最终的预测,论文的 ...
- Deformable 可变形的DETR
Deformable 可变形的DETR This repository is an official implementation of the paper Deformable DETR: Defo ...
随机推荐
- cin.get()解密
最近在使用cin.get()函数时遇到了一个迷惑行为,现已解开. 一.cin.get()的用法 char ch; ch = cin.get(); //第1种用法 cin.get(ch); //第2种用 ...
- c# 第38节 接口的实现
本节内容: 1:接口的两种实现是什么 2:隐式实现接口的说明 3:为什么有显式 以及显式声明格式 4:实现显式接口 1:接口的两种实现是什么 隐式实现接口:(当继承的父类直接没有相同的方法时) 即可用 ...
- appium常使用的命令
1.查看apk安装包的appPackagehe和appActivity aapt dump badging E:\taobao.apk > E:\taobao.txt -- 将appPack ...
- lua 2 变量
变量在使用前,必须在代码中进行声明,即创建该变量. 编译程序执行代码之前编译器需要知道如何给语句变量开辟存储区,用于存储变量的值. Lua 变量有三种类型:全局变量.局部变量.表中的域. Lua 中的 ...
- leetcode279. 完全平方数
给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n.你需要让组成和的完全平方数的个数最少. 示例 1: 输入: n = 12输出: 3 解释: 12 = ...
- github上fork的项目,如何同步原作者更新的内容?
一.引言 我在github上fork了一个项目,之后原作者又更新了内容,我想把原作者更新的内容同步到我fork的项目仓库中.在此记录一下同步步骤. 二.同步步骤 打开fork的项目的主页,点击Ne ...
- [LOJ 6432][PKUSC 2018]真实排名
[LOJ 6432][PKUSC 2018]真实排名 题意 给定 \(n\) 个选手的成绩, 选中其中 \(k\) 个使他们的成绩翻倍. 对于每个选手回答有多少种方案使得他的排名不发生变化. \(n\ ...
- 面向对象软件构造 (Bertrand Meyer 著)
Part A: The Issues 议题 第一章 软件品质 第二章 面向对象的标准 Part B: The Road To Object Orientation 通向面向对象之路 第三章 模块性 第 ...
- 安装pip-9.0.1-py2.py3-none-any.whl
pip的安装 1.从https://pypi.python.org/pypi/pip#downloads下载所需的.whl文件 2.将下载的文件放入Python的根目录 我的根目录是F:\Python ...
- 手风琴效果 animate
animate的手风琴效果 <style type="text/css"> * { margin: 0; padding: 0; } ul{ list-style: n ...