Transformer —— attention is all you need
https://www.cnblogs.com/rucwxb/p/10277217.html
Transformer —— attention is all you need
Transformer模型是2018年5月提出的,可以替代传统RNN和CNN的一种新的架构,用来实现机器翻译,论文名称是attention is all you need。无论是RNN还是CNN,在处理NLP任务时都有缺陷。CNN是其先天的卷积操作不很适合序列化的文本,RNN是其没有并行化,很容易超出内存限制(比如50tokens长度的句子就会占据很大的内存)。
下面左图是transformer模型一个结构,分成左边Nx框框的encoder和右边Nx框框的decoder,相较于RNN+attention常见的encoder-decoder之间的attention(上边的一个橙色框),还多出encoder和decoder内部的self-attention(下边的两个橙色框)。每个attention都有multi-head特征。最后,通过position encoding加入没考虑过的位置信息。 下面从multi-head attention,self-attention, position encoding几个角度介绍。

multi-head attention:
将一个词的vector切分成h个维度,求attention相似度时每个h维度计算。由于单词映射在高维空间作为向量形式,每一维空间都可以学到不同的特征,相邻空间所学结果更相似,相较于全体空间放到一起对应更加合理。比如对于vector-size=512的词向量,取h=8,每64个空间做一个attention,学到结果更细化。
self-attention:
每个词位的词都可以无视方向和距离,有机会直接和句子中的每个词encoding。比如上面右图这个句子,每个单词和同句其他单词之间都有一条边作为联系,边的颜色越深表明联系越强,而一般意义模糊的词语所连的边都比较深。比如:law,application,missing,opinion。。。
position encoding:
因为transformer既没有RNN的recurrence也没有CNN的convolution,但序列顺序信息很重要,比如你欠我100万明天要还和我欠你100万明天要还的含义截然不同。。。 transformer计算token的位置信息这里使用正弦波↓,类似模拟信号传播周期性变化。这样的循环函数可以一定程度上增加模型的泛化能力。

但BERT直接训练一个position embedding来保留位置信息,每个位置随机初始化一个向量,加入模型训练,最后就得到一个包含位置信息的embedding(简单粗暴。。),最后这个position embedding和word embedding的结合方式上,BERT选择直接拼接。
Transformer —— attention is all you need的更多相关文章
- Attention & Transformer
Attention & Transformer seq2seq; attention; self-attention; transformer; 1 注意力机制在NLP上的发展 Seq2Seq ...
- Paper Reading - Attention Is All You Need ( NIPS 2017 ) ★
Link of the Paper: https://arxiv.org/abs/1706.03762 Motivation: The inherently sequential nature of ...
- [NLP] REFORMER: THE EFFICIENT TRANSFORMER
1.现状 (1) 模型层数加深 (2) 模型参数量变大 (3) 难以训练 (4) 难以fine-tune 2. 单层参数量和占用内存分析 层 参数设置 参数量与占用内存 1 layer 0.5Bill ...
- (转)How Transformers Work --- The Neural Network used by Open AI and DeepMind
How Transformers Work --- The Neural Network used by Open AI and DeepMind Original English Version l ...
- 文本建模、文本分类相关开源项目推荐(Pytorch实现)
Awesome-Repositories-for-Text-Modeling repo paper miracleyoo/DPCNN-TextCNN-Pytorch-Inception Deep Py ...
- 【NLP】彻底搞懂BERT
# 好久没更新博客了,有时候随手在本上写写,或者Evernote上记记,零零散散的笔记带来零零散散的记忆o(╥﹏╥)o..还是整理到博客上比较有整体性,也方便查阅~ 自google在2018年10月底 ...
- CVPR2020|3D-VID:基于LiDar Video信息的3D目标检测框架
作者:蒋天园 Date:2020-04-18 来源:3D-VID:基于LiDar Video信息的3D目标检测框架|CVPR2020 Brief paper地址:https://arxiv.org/p ...
- ACNet: 特别的想法,腾讯提出结合注意力卷积的二叉神经树进行细粒度分类 | CVPR 2020
论文提出了结合注意力卷积的二叉神经树进行弱监督的细粒度分类,在树结构的边上结合了注意力卷积操作,在每个节点使用路由函数来定义从根节点到叶子节点的计算路径,结合所有叶子节点的预测值进行最终的预测,论文的 ...
- Deformable 可变形的DETR
Deformable 可变形的DETR This repository is an official implementation of the paper Deformable DETR: Defo ...
随机推荐
- Python函数基础和函数参数
函数的定义和函数的调用 return的作用 三种参数的定义 常用的内置函数 len() 函数基础 函数的定义 def 函数名(参数): pass return 表达式 pass在这里表示什么都没有,不 ...
- Linux:使用LVM进行磁盘管理
LVM的概念 LVM 可以实现对磁盘的动态管理,在磁盘不用重新分区的情况下动态调整文件系统的大 小,利用 LVM 管理的文件系统可以跨越磁盘. "/boot"分区用于存放系统引导文 ...
- SpringBoot+Mybatis多模块项目搭建教程
一.前言 框架为SpringBoot+Mybatis,本篇主要记录了在IDEA中搭建SpringBoot多模块项目的过程. 1.开发工具及系统环境 IDE:IntelliJ IDEA 2018.2 系 ...
- luoguP4404缓存交换
https://www.luogu.org/problem/P4404 题意 你有一个大小为n的缓存区,有个长度为m的查询序列. 每次查询的时候需要把查询值放入缓存,若缓存已满,则先删除任一位置再将其 ...
- python批量json文件转xml文件脚本(附代码)
场景:在使用了mask rcnn跑实验后标注了大量地json格式文件,现在打算使用yolo和faster rcnn 跑实验 所以需要将之前地json文件转为xml 但是找了很久,没发现有批量处 ...
- 《为什么说Redis是单线程的以及Redis为什么这么快!》
为什么说Redis是单线程的以及Redis为什么这么快! 一.前言 近乎所有与Java相关的面试都会问到缓存的问题,基础一点的会问到什么是“二八定律”.什么是“热数据和冷数据”,复杂一点的会问到缓 ...
- CF-1175 B.Catch Overflow!
题目大意:有一个初始变量,值为0,三种操作 for x 一个循环的开始,循环x次 end 一个循环的结束 add 将变量值加一 问最后变量的值是否超过2^32-1,若超过,输出一串字符,不超过则输出变 ...
- 洛谷P4169 [Violet]天使玩偶/SJY摆棋子
%%%神仙\(SJY\) 题目大意: 一个二维平面,有两种操作: \(1.\)增加一个点\((x,y)\) \(2.\)询问距离\((x,y)\)曼哈顿最近的一个点有多远 \(n,m\le 300 0 ...
- torch_11_风格迁移和cycleGAN
1,A Neural Algorithm of atistic Style https://axiv.org/pdf/1508.06576.pdf 如何定义图片的内容,风格: 定义内容:在vggnet ...
- vuex 源码解析(四) mutation 详解
mutation是更改Vuex的store中的状态的唯一方法,mutation类似于事件注册,每个mutation都可以带两个参数,如下: state ;当前命名空间对应的state payload ...