Tensorflow 官方示例

import tensorflow as tf
mnist = tf.keras.datasets.mnist (x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0 model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy']) model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)



这个本身精度不高,我们可以改变结构提升精度

CNN

from __future__ import division, print_function, absolute_import

# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=False) import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np # Training Parameters
learning_rate = 0.001
num_steps = 2000
batch_size = 128 # Network Parameters
num_input = 784 # MNIST data input (img shape: 28*28)
num_classes = 10 # MNIST total classes (0-9 digits)
dropout = 0.25 # Dropout, probability to drop a unit # Create the neural network
def conv_net(x_dict, n_classes, dropout, reuse, is_training): # Define a scope for reusing the variables
with tf.variable_scope('ConvNet', reuse=reuse):
# TF Estimator input is a dict, in case of multiple inputs
x = x_dict['images'] # MNIST data input is a 1-D vector of 784 features (28*28 pixels)
# Reshape to match picture format [Height x Width x Channel]
# Tensor input become 4-D: [Batch Size, Height, Width, Channel]
x = tf.reshape(x, shape=[-1, 28, 28, 1]) # Convolution Layer with 32 filters and a kernel size of 5
conv1 = tf.layers.conv2d(x, 32, 5, activation=tf.nn.relu)
# Max Pooling (down-sampling) with strides of 2 and kernel size of 2
conv1 = tf.layers.max_pooling2d(conv1, 2, 2) # Convolution Layer with 64 filters and a kernel size of 3
conv2 = tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu)
# Max Pooling (down-sampling) with strides of 2 and kernel size of 2
conv2 = tf.layers.max_pooling2d(conv2, 2, 2) # Flatten the data to a 1-D vector for the fully connected layer
fc1 = tf.contrib.layers.flatten(conv2) # Fully connected layer (in tf contrib folder for now)
fc1 = tf.layers.dense(fc1, 1024)
# Apply Dropout (if is_training is False, dropout is not applied)
fc1 = tf.layers.dropout(fc1, rate=dropout, training=is_training) # Output layer, class prediction
out = tf.layers.dense(fc1, n_classes) return out # Define the model function (following TF Estimator Template)
def model_fn(features, labels, mode): # Build the neural network
# Because Dropout have different behavior at training and prediction time, we
# need to create 2 distinct computation graphs that still share the same weights.
logits_train = conv_net(features, num_classes, dropout, reuse=False, is_training=True)
logits_test = conv_net(features, num_classes, dropout, reuse=True, is_training=False) # Predictions
pred_classes = tf.argmax(logits_test, axis=1)
pred_probas = tf.nn.softmax(logits_test) # If prediction mode, early return
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode, predictions=pred_classes) # Define loss and optimizer
loss_op = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits_train, labels=tf.cast(labels, dtype=tf.int32)))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op, global_step=tf.train.get_global_step()) # Evaluate the accuracy of the model
acc_op = tf.metrics.accuracy(labels=labels, predictions=pred_classes) # TF Estimators requires to return a EstimatorSpec, that specify
# the different ops for training, evaluating, ...
estim_specs = tf.estimator.EstimatorSpec(
mode=mode,
predictions=pred_classes,
loss=loss_op,
train_op=train_op,
eval_metric_ops={'accuracy': acc_op}) return estim_specs # Build the Estimator
model = tf.estimator.Estimator(model_fn) # Define the input function for training
input_fn = tf.estimator.inputs.numpy_input_fn(
x={'images': mnist.train.images}, y=mnist.train.labels,
batch_size=batch_size, num_epochs=None, shuffle=True)
# Train the Model
model.train(input_fn, steps=num_steps) # Evaluate the Model
# Define the input function for evaluating
input_fn = tf.estimator.inputs.numpy_input_fn(
x={'images': mnist.test.images}, y=mnist.test.labels,
batch_size=batch_size, shuffle=False)
# Use the Estimator 'evaluate' method
model.evaluate(input_fn) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) #test=pd.read_csv('./input/test.csv')
import numpy
from numpy import genfromtxt
my_data = numpy.double(genfromtxt('./input/test.csv', delimiter=',')) # Prepare the input data
input_fn = tf.estimator.inputs.numpy_input_fn(
x={'images': numpy.float32(my_data[1:,:])}, shuffle=False)
# Use the model to predict the images class
preds2 = list(model.predict(input_fn)) Submission = pd.DataFrame({
"ImageId": range(1, len(preds2)+1),
"Label": preds2
}) Submission.to_csv("cnnMnistSubmission.csv", index=False) Submission.head(5)

提交结果

kaggle 实战 (2): CNN 手写数字识别的更多相关文章

  1. Kaggle竞赛丨入门手写数字识别之KNN、CNN、降维

    引言 这段时间来,看了西瓜书.蓝皮书,各种机器学习算法都有所了解,但在实践方面却缺乏相应的锻炼.于是我决定通过Kaggle这个平台来提升一下自己的应用能力,培养自己的数据分析能力. 我个人的计划是先从 ...

  2. CNN 手写数字识别

    1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性, ...

  3. 卷积神经网络CNN 手写数字识别

    1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性, ...

  4. Keras cnn 手写数字识别示例

    #基于mnist数据集的手写数字识别 #构造了cnn网络拟合识别函数,前两层为卷积层,第三层为池化层,第四层为Flatten层,最后两层为全连接层 #基于Keras 2.1.1 Tensorflow ...

  5. pytorch CNN 手写数字识别

    一个被放弃的入门级的例子终于被我实现了,虽然还不太完美,但还是想记录下 1.预处理 相比较从库里下载数据集(关键是经常失败,格式也看不懂),更喜欢直接拿图片,从网上找了半天,最后从CSDN上下载了一个 ...

  6. keras框架的CNN手写数字识别MNIST

    参考:林大贵.TensorFlow+Keras深度学习人工智能实践应用[M].北京:清华大学出版社,2018. 首先在命令行中写入 activate tensorflow和jupyter notebo ...

  7. kaggle 实战 (1): PCA + KNN 手写数字识别

    文章目录 加载package read data PCA 降维探索 选择50维度, 拆分数据为训练集,测试机 KNN PCA降维和K值筛选 分析k & 维度 vs 精度 预测 生成提交文件 本 ...

  8. 深度学习之PyTorch实战(3)——实战手写数字识别

    上一节,我们已经学会了基于PyTorch深度学习框架高效,快捷的搭建一个神经网络,并对模型进行训练和对参数进行优化的方法,接下来让我们牛刀小试,基于PyTorch框架使用神经网络来解决一个关于手写数字 ...

  9. keras和tensorflow搭建DNN、CNN、RNN手写数字识别

    MNIST手写数字集 MNIST是一个由美国由美国邮政系统开发的手写数字识别数据集.手写内容是0~9,一共有60000个图片样本,我们可以到MNIST官网免费下载,总共4个.gz后缀的压缩文件,该文件 ...

随机推荐

  1. 整合phoenix4.6.0-HBase-1.0到cdh5..4.7 编译phoenix4.6源码 RegionServer 宕机

    Phoenix 集成HBase Phoenix 版本:phoenix-4.6.0-HBase-1.0 源码下载地址: http://apache.cs.uu.nl/phoenix/phoenix-4. ...

  2. python数据结构之快速排序

    def quick_sort(nums): if not nums: return [] else: # 这里取第0个数为基点 flag = nums[0] # 小于flag 的放到左边 left = ...

  3. 2019基于python的网络爬虫系列,爬取糗事百科

    **因为糗事百科的URL改变,正则表达式也发生了改变,导致了网上许多的代码不能使用,所以写下了这一篇博客,希望对大家有所帮助,谢谢!** 废话不多说,直接上代码. 为了方便提取数据,我用的是beaut ...

  4. 随笔-ansible-5

    1.Includes的使用场景 A项目要用重启PHP B项目要用重启PHP C项目要用重启PHP 可以将重启PHP这个task独立成一个playbook文件,供他人引用即可. 首先编写重启PHP的文件 ...

  5. git的指令的一张很好的图

    非常好的一张图

  6. 【第二次个人作业】结对作业Core第一组:四则运算生成PB16061082+PB16120517

    [整体概况] 1.描述最终的代码的实现思路以及关键代码. 2.结对作业两个人配合的过程和两个人分工. 3.API接口文档和两个组的对接. 4.效能分析,优化分析和心得体会. [代码实现] 一. 实现功 ...

  7. opencv 图像细化

    图像细化多用于机器人视觉,OCR字符识别等领域,细化后的图像经过去毛刺就成为了我们常说的图像的骨架. 该图像细化代码依据论文: T. Y. ZHANG and C. Y. SUEN  A Fast P ...

  8. Hexo next主题添加站内搜索功能

    根据关键字搜索博文,站内搜索的功能很实用.hexo开启站内搜索很方便,已经有现成的插件可以使用,也是为了方便自己 安装插件 npm install hexo-generator-search --sa ...

  9. leetcode-263-丑数一

    题目描述: 方法一:递归 class Solution: def isUgly(self, num: int) -> bool: if num == 0: return False if num ...

  10. 3年A班,从现在起大家都是人质-观后感

    花了2天时间观看了由小室直子.铃木勇马.水野格导演,武藤将吾编剧的3年A班日剧. 这部剧我觉得很擅长用对比的手法,将一个受欢迎的老师人前人后强烈对比,一群外表成熟,内心却始终还是孩子气的学生对比,也将 ...