Tensorflow 官方示例

import tensorflow as tf
mnist = tf.keras.datasets.mnist (x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0 model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy']) model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)



这个本身精度不高,我们可以改变结构提升精度

CNN

from __future__ import division, print_function, absolute_import

# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=False) import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np # Training Parameters
learning_rate = 0.001
num_steps = 2000
batch_size = 128 # Network Parameters
num_input = 784 # MNIST data input (img shape: 28*28)
num_classes = 10 # MNIST total classes (0-9 digits)
dropout = 0.25 # Dropout, probability to drop a unit # Create the neural network
def conv_net(x_dict, n_classes, dropout, reuse, is_training): # Define a scope for reusing the variables
with tf.variable_scope('ConvNet', reuse=reuse):
# TF Estimator input is a dict, in case of multiple inputs
x = x_dict['images'] # MNIST data input is a 1-D vector of 784 features (28*28 pixels)
# Reshape to match picture format [Height x Width x Channel]
# Tensor input become 4-D: [Batch Size, Height, Width, Channel]
x = tf.reshape(x, shape=[-1, 28, 28, 1]) # Convolution Layer with 32 filters and a kernel size of 5
conv1 = tf.layers.conv2d(x, 32, 5, activation=tf.nn.relu)
# Max Pooling (down-sampling) with strides of 2 and kernel size of 2
conv1 = tf.layers.max_pooling2d(conv1, 2, 2) # Convolution Layer with 64 filters and a kernel size of 3
conv2 = tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu)
# Max Pooling (down-sampling) with strides of 2 and kernel size of 2
conv2 = tf.layers.max_pooling2d(conv2, 2, 2) # Flatten the data to a 1-D vector for the fully connected layer
fc1 = tf.contrib.layers.flatten(conv2) # Fully connected layer (in tf contrib folder for now)
fc1 = tf.layers.dense(fc1, 1024)
# Apply Dropout (if is_training is False, dropout is not applied)
fc1 = tf.layers.dropout(fc1, rate=dropout, training=is_training) # Output layer, class prediction
out = tf.layers.dense(fc1, n_classes) return out # Define the model function (following TF Estimator Template)
def model_fn(features, labels, mode): # Build the neural network
# Because Dropout have different behavior at training and prediction time, we
# need to create 2 distinct computation graphs that still share the same weights.
logits_train = conv_net(features, num_classes, dropout, reuse=False, is_training=True)
logits_test = conv_net(features, num_classes, dropout, reuse=True, is_training=False) # Predictions
pred_classes = tf.argmax(logits_test, axis=1)
pred_probas = tf.nn.softmax(logits_test) # If prediction mode, early return
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode, predictions=pred_classes) # Define loss and optimizer
loss_op = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits_train, labels=tf.cast(labels, dtype=tf.int32)))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op, global_step=tf.train.get_global_step()) # Evaluate the accuracy of the model
acc_op = tf.metrics.accuracy(labels=labels, predictions=pred_classes) # TF Estimators requires to return a EstimatorSpec, that specify
# the different ops for training, evaluating, ...
estim_specs = tf.estimator.EstimatorSpec(
mode=mode,
predictions=pred_classes,
loss=loss_op,
train_op=train_op,
eval_metric_ops={'accuracy': acc_op}) return estim_specs # Build the Estimator
model = tf.estimator.Estimator(model_fn) # Define the input function for training
input_fn = tf.estimator.inputs.numpy_input_fn(
x={'images': mnist.train.images}, y=mnist.train.labels,
batch_size=batch_size, num_epochs=None, shuffle=True)
# Train the Model
model.train(input_fn, steps=num_steps) # Evaluate the Model
# Define the input function for evaluating
input_fn = tf.estimator.inputs.numpy_input_fn(
x={'images': mnist.test.images}, y=mnist.test.labels,
batch_size=batch_size, shuffle=False)
# Use the Estimator 'evaluate' method
model.evaluate(input_fn) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) #test=pd.read_csv('./input/test.csv')
import numpy
from numpy import genfromtxt
my_data = numpy.double(genfromtxt('./input/test.csv', delimiter=',')) # Prepare the input data
input_fn = tf.estimator.inputs.numpy_input_fn(
x={'images': numpy.float32(my_data[1:,:])}, shuffle=False)
# Use the model to predict the images class
preds2 = list(model.predict(input_fn)) Submission = pd.DataFrame({
"ImageId": range(1, len(preds2)+1),
"Label": preds2
}) Submission.to_csv("cnnMnistSubmission.csv", index=False) Submission.head(5)

提交结果

kaggle 实战 (2): CNN 手写数字识别的更多相关文章

  1. Kaggle竞赛丨入门手写数字识别之KNN、CNN、降维

    引言 这段时间来,看了西瓜书.蓝皮书,各种机器学习算法都有所了解,但在实践方面却缺乏相应的锻炼.于是我决定通过Kaggle这个平台来提升一下自己的应用能力,培养自己的数据分析能力. 我个人的计划是先从 ...

  2. CNN 手写数字识别

    1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性, ...

  3. 卷积神经网络CNN 手写数字识别

    1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性, ...

  4. Keras cnn 手写数字识别示例

    #基于mnist数据集的手写数字识别 #构造了cnn网络拟合识别函数,前两层为卷积层,第三层为池化层,第四层为Flatten层,最后两层为全连接层 #基于Keras 2.1.1 Tensorflow ...

  5. pytorch CNN 手写数字识别

    一个被放弃的入门级的例子终于被我实现了,虽然还不太完美,但还是想记录下 1.预处理 相比较从库里下载数据集(关键是经常失败,格式也看不懂),更喜欢直接拿图片,从网上找了半天,最后从CSDN上下载了一个 ...

  6. keras框架的CNN手写数字识别MNIST

    参考:林大贵.TensorFlow+Keras深度学习人工智能实践应用[M].北京:清华大学出版社,2018. 首先在命令行中写入 activate tensorflow和jupyter notebo ...

  7. kaggle 实战 (1): PCA + KNN 手写数字识别

    文章目录 加载package read data PCA 降维探索 选择50维度, 拆分数据为训练集,测试机 KNN PCA降维和K值筛选 分析k & 维度 vs 精度 预测 生成提交文件 本 ...

  8. 深度学习之PyTorch实战(3)——实战手写数字识别

    上一节,我们已经学会了基于PyTorch深度学习框架高效,快捷的搭建一个神经网络,并对模型进行训练和对参数进行优化的方法,接下来让我们牛刀小试,基于PyTorch框架使用神经网络来解决一个关于手写数字 ...

  9. keras和tensorflow搭建DNN、CNN、RNN手写数字识别

    MNIST手写数字集 MNIST是一个由美国由美国邮政系统开发的手写数字识别数据集.手写内容是0~9,一共有60000个图片样本,我们可以到MNIST官网免费下载,总共4个.gz后缀的压缩文件,该文件 ...

随机推荐

  1. HDU 1392 Surround the Trees (凸包周长)

    题目链接:HDU 1392 Problem Description There are a lot of trees in an area. A peasant wants to buy a rope ...

  2. 一些识别CMS的经验方法总结

    今天学到了一些识别CMS的快速方法,也算是一种信息收集经验的积累,在这里要感谢一下我的同事“gakki的童养夫”对我的大力支持. 如何判断网站的CMS? robots.txt文件 robots.txt ...

  3. [已解决]报错UnicodeDecodeError

    输出报错: UnicodeDecodeError: 'utf-8' codec can't decode byte 0xc4 in position 220: in 解决方案:将编码方式utf-8 修 ...

  4. HTML5 Canvas知识点学习笔记

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/huangyibin628/article/details/30108165 canvas ① 主要作 ...

  5. java oop第11章_反射、BaseDao的进一步改造

      引言:从Java5开始,Java中引用了一个新的概念反射,当程序运行时,能动态感知到程序中拥有的所以信息,这个获取信息的过程是采用反射机制来完成. 一.       Class类: Class类用 ...

  6. windows server 常用功能(一)

    最近做了一个windows server 2016的环境,也遇到了很多问题,作为一个新手,又没有很好的记录下解决方案,因为写这篇文章的时间有点晚,因此只能留下一些思路以供参考. 1.作为一个serve ...

  7. windows10 自动配置切换IP

    办公室与家里的ip网段不一样.每次都要来回修改本地无线WLAN IP段.写了个脚本bat,自动配置WLAN IP,方便切换. 建立 auto-set-ip.bat,保存格式需为ANSI,否则中文会乱码 ...

  8. Spring Boot学习笔记二

    Spring Boot入门第二篇 第一天的详见:https://www.cnblogs.com/LBJLAKERS/p/12001253.html 同样是新建一个pring Initializer快速 ...

  9. [DataContract]引用

    项目->右键->添加引用->找到System.Runtime.Serialization 添加之

  10. Socket心跳包异常检测的C语言实现,服务器与客户端代码案例

    在Socket心跳机制中,心跳包可以由服务器发送给客户端,也可以由客户端发送给服务器,不过比较起来,前者开销可能较大.本文实现的是由客户端给服务器发送心跳包,服务器不必返回应答包,而是通过判断客户在线 ...