http://www.lydsy.com/JudgeOnline/problem.php?id=1084

思路:分m=1和m=2操作

 #include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
int f[][],F[][][];
int sum[],sum1[],sum2[],n,m,K;
int read(){
int t=,f=;char ch=getchar();
while (ch<''||ch>''){if (ch=='-') f=-;ch=getchar();}
while (''<=ch&&ch<=''){t=t*+ch-'';ch=getchar();}
return t*f;
}
void sxpianfen1(){
for (int i=;i<=n;i++)
{int x=read();sum[i]=sum[i-]+x;}
for (int i=;i<=n;i++)
for (int k=;k<=K;k++){
f[i][k]=f[i-][k];
for (int j=;j<i;j++)
f[i][k]=std::max(f[i][k],f[j][k-]+sum[i]-sum[j]);
}
printf("%d\n",f[n][K]);
}
void sxpianfen2(){
for (int i=;i<=n;i++){
int x=read(),y=read();
sum1[i]=sum1[i-]+x;
sum2[i]=sum2[i-]+y;
}
for (int k=;k<=K;k++)
for (int i=;i<=n;i++)
for (int j=;j<=n;j++){
F[i][j][k]=std::max(F[i-][j][k],F[i][j-][k]);
for (int l=;l<i;l++) F[i][j][k]=std::max(F[i][j][k],F[l][j][k-]+sum1[i]-sum1[l]);
for (int l=;l<j;l++) F[i][j][k]=std::max(F[i][j][k],F[i][l][k-]+sum2[j]-sum2[l]);
if (i==j)
for (int l=;l<i;l++) F[i][j][k]=std::max(F[i][j][k],F[l][l][k-]+sum1[i]+sum2[j]-sum1[l]-sum2[l]);
}
printf("%d\n",F[n][n][K]);
}
int main(){
n=read();m=read();K=read();
if (m==){
sxpianfen1();
}else
sxpianfen2();
}

BZOJ 1084 最大子矩阵的更多相关文章

  1. BZOJ 1084 最大子矩阵 dp

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1084 题目大意: 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分 ...

  2. [SCOI2005][BZOJ 1084]最大子矩阵

    Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. Input 第一行为n,m,k(1≤n≤100,1≤m≤2 ...

  3. 【SCOI2005】 最大子矩阵 BZOJ 1084

    Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. Input 第一行为n,m,k(1≤n≤100,1≤m≤2 ...

  4. [BZOJ 1084] [SCOI2005] 最大子矩阵 【DP】

    题目链接:BZOJ - 1084 题目分析 我看的是神犇BLADEVIL的题解. 1)对于 m = 1 的情况, 首先可能不取 Map[i][1],先 f[i][k] = f[i - 1][k];   ...

  5. BZOJ 1084: [SCOI2005]最大子矩阵 DP

    1084: [SCOI2005]最大子矩阵 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1084 Description 这里有一个n* ...

  6. 【BZOJ 1084】 1084: [SCOI2005]最大子矩阵 (DP)

    1084: [SCOI2005]最大子矩阵 Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. Input 第 ...

  7. BZOJ 1084 (SCOI 2005) 最大子矩阵

    1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 3560 Solved: 1779 [Submit][Sta ...

  8. 【BZOJ 1084】 [SCOI2005]最大子矩阵(DP)

    题链 http://www.lydsy.com/JudgeOnline/problem.php?id=1084 Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩 ...

  9. BZOJ 1084 [SCOI2005]最大子矩阵 - 动态规划

    传送门 题目大意: 从矩阵中取出k个互不重叠的子矩阵,求最大的和. 题目分析: 对于m=1,直接最大m子段和. 对于m=2: \(dp[i][j][k]\)表示扫描到第一列i和第2列j时选取了k个矩阵 ...

随机推荐

  1. ubuntu vim YCM

    http://blog.sina.com.cn/s/blog_499386b00100rxm1.html http://www.cnblogs.com/junnyfeng/p/3633697.html

  2. 如何成为一个牛逼的C/C++程序员?

    这个题目的噱头太大,要真的写起来, 足够写一本书了. 本人是过来人, 结合自身的体会和大家交流一下,希望新人能少走弯路. 每个人的情况不一样,我下面的描述可能并不适合每一个看到这篇文章的人. 一.C/ ...

  3. 《Programming WPF》翻译 第9章 4.模板

    原文:<Programming WPF>翻译 第9章 4.模板 对一个自定义元素最后的设计考虑是,它是如何连接其可视化的.如果一个元素直接从FrameworkElement中派生,这将会适 ...

  4. bzoj3431 [Usaco2014 Jan]Bessie Slows Down

    Description [Brian Dean, 2014] Bessie the cow is competing in a cross-country skiing event at the wi ...

  5. MySQL存储过程事务处理

    BEGIN ; ; START TRANSACTION; #这边放sql语句,涉及到的表必须都为InnoDB THEN ROLLBACK; ELSE COMMIT; END IF; END 转自:ht ...

  6. Gray Code 解答

    Question The gray code is a binary numeral system where two successive values differ in only one bit ...

  7. [置顶] java ant 配置及构建项目

      Ant是一种基于Java的构建工具.Ant文件是配置构建目标过程的XML文件,也称为Ant脚本.                     (因为对这个不是很了解,所以用词方面可能于个人的理解有偏差 ...

  8. hdu 5256 序列变换(LIS最长上升子序列)

    Problem Description 我们有一个数列A1,A2...An,你现在要求修改数量最少的元素,使得这个数列严格递增.其中无论是修改前还是修改后,每个元素都必须是整数. 请输出最少需要修改多 ...

  9. PHP你可能也会掉入的坑

    今天被人问: $var = 'test'; if (isset($var['somekey'])) { echo 'reach here!!!'; } 会不会输出'reach here!!!'? -- ...

  10. Linux安装中文man手冊

    1.下载中文包: http://pkgs.fedoraproject.org/repo/pkgs/man-pages-zh-CN/manpages-zh-1.5.1.tar.gz/13275fd039 ...