Description

在操场上沿一直线排列着 

n堆石子。现要将石子有次序地合并成一堆。规定每次只能选相邻的两堆石子合并成新的一堆, 

并将新的一堆石子数记为该次合并的得分。允许在第一次合并前对调一次相邻两堆石子的次序。 

计算在上述条件下将n堆石子合并成一堆的最小得分。 

Input

输入数据共有二行,其中,第1行是石子堆数n≤100; 

第2行是顺序排列的各堆石子数(≤20),每两个数之间用空格分隔。 

Output

输出合并的最小得分。

Sample Input


3
2 5 1

Sample Output


11

第一道区间dp,这题设一个数组dp[i][j]表示从i取到j的最小得分。

状态转移方程:用len表示所选数字的个数,dp[i][i+len-1]=min(dp[i][i+len-1],dp[i][k]+dp[k+1][i+len-1]+sum[i+len-1]-sum[i-1]);这里注意所有的dp[i][i]为0,因为只有一个数的时候不用合并,所以是0。因为题目允许第一次开始取的时候相邻数字能搞交换,所以外面加个循环,同时每次的sum[]都要重新初始化。另外,这题用四边形优化会大大加快速度。

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
#define inf 99999999
#define ll long long
int sum[200],a[200];
int dp[200][200];
int main()
{
int n,m,i,j,c,len,k,t;
int minx;
while(scanf("%d",&n)!=EOF)
{
sum[0]=0;
for(i=1;i<=n;i++){
scanf("%d",&a[i]);
sum[i]=sum[i-1]+a[i];
dp[i][i]=0;
} minx=inf;
for(t=1;t<=n-1;t++){
sum[t]=sum[t]-a[t]+a[t+1];
for(len=2;len<=n;len++){
for(i=1;i<=n-len+1;i++){
dp[i][i+len-1 ]=inf;
for(k=i;k<=i+len-2;k++){
dp[i][i+len-1]=min(dp[i][i+len-1],dp[i][k]+dp[k+1][i+len-1]+sum[i+len-1]-sum[i-1]);
}
}
}
sum[t]=sum[t]+a[t]-a[t+1];
minx=min(minx,dp[1][n]);
} printf("%d\n",minx); }
return 0;
}

四边形优化:

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
#define inf 99999999
#define ll long long
int sum[200],a[200],s[200][200];/*s[i][j]函数表示区间[i,j]从k点分开是最优的*/
int dp[200][200];
int main()
{
int n,m,i,j,c,len,k,t;
int minx;
while(scanf("%d",&n)!=EOF)
{
sum[0]=0;
for(i=1;i<=n;i++){
scanf("%d",&a[i]);
s[i][i]=i;
sum[i]=sum[i-1]+a[i];
dp[i][i]=0;
} minx=inf;
for(t=1;t<=n-1;t++){
sum[t]=sum[t]-a[t]+a[t+1];
for(len=2;len<=n;len++){
for(i=1;i<=n-len+1;i++){
j=i+len-1;
dp[i][j]=inf;
for(k=s[i][j-1];k<=s[i+1][j];k++){
if(dp[i][j]>dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1]){
dp[i][j]=dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1];
s[i][j]=k;
} }
} } sum[t]=sum[t]+a[t]-a[t+1];
minx=min(minx,dp[1][n]);
} printf("%d\n",minx); }
return 0;
}


												

zjnu1181 石子合并【基础算法・动态规划】——高级的更多相关文章

  1. BZOJ-3229 石子合并 GarsiaWachs算法

    经典DP?稳T 3229: [Sdoi2008]石子合并 Time Limit: 3 Sec Memory Limit: 128 MB Submit: 426 Solved: 202 [Submit] ...

  2. 洛谷 P5569 [SDOI2008]石子合并 GarsiaWachs算法

    石子合并终极通用版 #include<bits/stdc++.h> using namespace std ; ]; int n,t,ans; void combine(int k) { ...

  3. POJ 1738 石子合并2 GarsiaWachs算法

    石子合并(GarsiaWachs算法) 只能用该算法过!!! 详解看代码 //#pragma comment(linker, "/STACK:167772160")//手动扩栈~~ ...

  4. CH5301 石子合并【区间dp】

    5301 石子合并 0x50「动态规划」例题 描述 设有N堆沙子排成一排,其编号为1,2,3,…,N(N<=300).每堆沙子有一定的数量,可以用一个整数来描述,现在要将这N堆沙子合并成为一堆, ...

  5. 【BZOJ 3229】 3229: [Sdoi2008]石子合并 (GarsiaWachs算法)

    3229: [Sdoi2008]石子合并 Description 在一个操场上摆放着一排N堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合 ...

  6. 石子合并(直线版+环形版)&(朴素写法+四边形优化+GarsiaWachs算法)

    石子合并-直线版 (点击此处查看题目) 朴素写法 最简单常见的写法就是通过枚举分割点,求出每个区间合并的最小花费,从而得到整个区间的最小花费,时间复杂度为O(n^3),核心代码如下: ; i < ...

  7. PHP基础算法

    1.首先来画个菱形玩玩,很多人学C时在书上都画过,咱们用PHP画下,画了一半. 思路:多少行for一次,然后在里面空格和星号for一次. <?php for($i=0;$i<=3;$i++ ...

  8. BZOJ 3229: [Sdoi2008]石子合并

    3229: [Sdoi2008]石子合并 时间限制: 3 Sec  内存限制: 128 MB提交: 497  解决: 240[提交][][] 题目描述 在一个操场上摆放着一排N堆石子.现要将石子有次序 ...

  9. 石子合并(四边形不等式优化dp) POJ1160

    该来的总是要来的———————— 经典问题,石子合并. 对于 f[i][j]= min{f[i][k]+f[k+1][j]+w[i][j]} From 黑书 凸四边形不等式:w[a][c]+w[b][ ...

随机推荐

  1. .NET 调整图片尺寸(Resize)各种方法

    本文中如无特别说明 .NET 指 .NET 5或者更高版本,代码同样可用于 .NET Core 前言 调整图片尺寸最常用的场景就是生成缩略图,一般为保持纵横比缩小,如果图片放大会使图片变得模糊,如果确 ...

  2. 【.NET 与树莓派】使用 GPIO 库

    上回老周在说准备工作的时候,提到过树莓派用金属盒散热的事情.有朋友会说,加了金属盒子接线不方便,就算用了"T"形板,毕竟是把导线延长了的.其实扩展板就是把原有的引脚引出(类似于延长 ...

  3. OLE NumberFormat

    设置单元格的数字格式, $3.00 想搞出这样的格式,在VBA里的格式定义如下 $#,##0.00;-$#,##0.00 可是在abap里,就是不行.最后尝试了很多次,原来在在$前面加\变成\$#,# ...

  4. php压缩文件夹并下载到本地

    /** * @param $path 要压缩的文件夹路径 * @param $filename 要生成的压缩包名称 */ public function create_zip($path,$filen ...

  5. 【源码解读】js原生消息提示插件

    效果如下: 关闭message后前后message的衔接非常丝滑,这部分是我比较感兴趣的.带着这个问题先了解下DOM结构,顺便整理下作者的思路. 从DOM里我们可以看到所有的message都在一个容器 ...

  6. Git安装/VScode+Git+Github

    Git安装/VScode+Git+Github 1. 相关简介 git 版本控制工具,支持该工具的网站有Github.BitBucket.Gitorious.国内的OS China仓库.Csdn仓库等 ...

  7. Http中的options请求

    引自:https://www.jianshu.com/p/5cf82f092201.https://www.cnblogs.com/mamimi/p/10602722.html 一.options是什 ...

  8. winform 扫码识别二维码

    因为公司业务需求,需要在Windows系统下调用摄像头识别二维码需求,就有了这个功能. 我根据网上网友提供的一些资料,自己整合应用到项目中,效果还不错(就是感觉像素不是太好) 现在将调用摄像头+识别二 ...

  9. Hmailserver搭建邮箱服务器

    由于阿里云,谷歌云,腾讯云等服务器都不开放25端口和pop3端口,想要使用邮箱服务得购买他们的企业邮箱,但是对于个人而言比较贵. 所以我们需要利用家庭宽带申请公网IP. 首先打电话给运营商客服,申请动 ...

  10. Transformation-Based Error-Driven Learning and Natural Language Processing: A Case Study in Part-of-Speech Tagging

    http://delivery.acm.org/10.1145/220000/218367/p543-brill.pdf?ip=116.30.5.154&id=218367&acc=O ...