Overfitting & Regularization
Overfitting & Regularization
The Problem of overfitting
A common issue in machine learning or mathematical modeling is overfitting, which occurs when you build a model that not only captures the signal but also the noise in a dataset.
Because we want to create models that generalize and perform well on different data-points, we need to avoid overfitting.
In comes regularization, which is a powerful mathematical tool for reducing overfitting within our model. It does this by adding a penalty for model complexity or extreme parameter values, and it can be applied to different learning models: linear regression, logistic regression, and support vector machines to name a few.
Below is the linear regression cost function with an added regularization component.

The regularization component is really just the sum of squared coefficients of your model (your beta values), multiplied by a parameter, lambda.
Lambda
Lambda can be adjusted to help you find a good fit for your model. However, a value that is too low might not do anything, and one that is too high might actually cause you to underfit the model and lose valuable information. It’s up to the user to find the sweet spot.
Cross validation using different values of lambda can help you to identify the optimal lambda that produces the lowest out of sample error.
Regularization methods (L1 & L2)
The equation shown above is called Ridge Regression (L2) - the beta coefficients are squared and summed. However, another regularization method is Lasso Regreesion (L1), which sums the absolute value of the beta coefficients. Even more, you can combine Ridge and Lasso linearly to get Elastic Net Regression (both squared and absolute value components are included in the cost function).
L2 regularization tends to yield a “dense” solution, where the magnitude of the coefficients are evenly reduced. For example, for a model with 3 parameters, B1, B2, and B3 will reduce by a similar factor.
However, with L1 regularization, the shrinkage of the parameters may be uneven, driving the value of some coefficients to 0. In other words, it will produce a sparse solution. Because of this property, it is often used for feature selection- it can help identify the most predictive features, while zeroing the others.
It also a good idea to appropriately scale your features, so that your coefficients are penalized based on their predictive power and not their scale.
As you can see, regularization can be a powerful tool for reducing overfitting.
In the words of the great thinkers:
An in-depth look into theory and application of regularization.
Overfitting & Regularization的更多相关文章
- machine learning(13) -- solving the problem of overfitting:regularization
solving the problem of overfitting:regularization 发生的在linear regression上面的overfitting问题 发生在logistic ...
- 深度学习(一)cross-entropy softmax overfitting regularization dropout
一.Cross-entropy 我们理想情况是让神经网络学习更快 假设单模型: 只有一个输入,一个神经元,一个输出 简单模型: 输入为1时, 输出为0 神经网络的学习行为和人脑差的很多, 开始学习 ...
- Stanford机器学习笔记-3.Bayesian statistics and Regularization
3. Bayesian statistics and Regularization Content 3. Bayesian statistics and Regularization. 3.1 Und ...
- Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Regularization)
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep ...
- Notes : <Hands-on ML with Sklearn & TF> Chapter 1
<Hands-on ML with Sklearn & TF> Chapter 1 what is ml from experience E with respect to som ...
- 斯坦福大学CS224d课程目录
https://www.zybuluo.com/hanxiaoyang/note/404582 Lecture 1:自然语言入门与次嵌入 1.1 Intro to NLP and Deep Learn ...
- 过拟合(Overfitting)和正规化(Regularization)
过拟合: Overfitting就是指Ein(在训练集上的错误率)变小,Eout(在整个数据集上的错误率)变大的过程 Underfitting是指Ein和Eout都变大的过程 从上边这个图中,虚线的左 ...
- 机器学习(四)正则化与过拟合问题 Regularization / The Problem of Overfitting
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...
- How to avoid Over-fitting using Regularization?
http://www.mit.edu/~9.520/scribe-notes/cl7.pdf https://en.wikipedia.org/wiki/Bayesian_interpretation ...
随机推荐
- quartusII13.0使用教程
1.新建工程项目,填写项目存储路径和工程名,不要出现中文路径 2.添加已存在文件(可选),在[File name]下选择已经存在的工程项目,利用[Add]或[Add all]命令添加文件到新工程,点击 ...
- MapReduce编程之Map Join多种应用场景与使用
Map Join 实现方式一:分布式缓存 ● 使用场景:一张表十分小.一张表很大. ● 用法: 在提交作业的时候先将小表文件放到该作业的DistributedCache中,然后从DistributeC ...
- Mysql分库分表方案,如何分,怎样分?
https://www.cnblogs.com/phpper/p/6937896.html 为什么要分表和分区? 日常开发中我们经常会遇到大表的情况,所谓的大表是指存储了百万级乃至千万级条记录的表.这 ...
- 是否升级IOS11?IOS11不支持32位程序 查看手机哪些APP不支持
查看苹果32位APP具体步骤:设置-通用-关于本机-应用程序.如果手机中下载了32位应用的话,苹果会给出应用兼容性提醒:如果手机里没有安装32位应用,右侧没有小三角,点击“应用程序”也会没有反应. I ...
- [BZOJ2055]80人环游世界 有上下界最小费用最大流
2055: 80人环游世界 Time Limit: 10 Sec Memory Limit: 64 MB Description 想必大家都看过成龙大哥的<80天环游世界>,里面 ...
- MT【128】不动点指路
已知数列\(\{a_n\}\)满足\(2a_{n+1}=1-a_n^2\),且\(0<a_1<1\).求证:当\(n\geqslant 3\) 时,\(\left|\dfrac{1}{a_ ...
- UILabel居中显示的方法
在IB中拖出一个UIView @IBOutlet weak var myView: UIView! 下面创建的UILabel是在myView中居中显示 方法1: var label = UILabel ...
- IoT固/软件更新及开源选项
会出什么问题呢?大多数这些设备的设计都不像是被恶意攻击的目标. 嵌入式系统传统上被认为是稳定的产品, 但实施起来成本高昂, 因为投资回报率(ROI)在的周期比较长. 在过去一旦发货, 就很少需要更新这 ...
- SDOI2017硬币游戏
题面链接 洛咕 sol 神题,幸好我不是SD的QAQ. 假设你们都会\(O(n^3m^3)\)的高斯消元,具体来说就是建出\(Trie\)图然后套游走的板子. 然后我们发现可以把不能匹配任何串的概率压 ...
- Java之链表实现栈结构
package com.wzlove.stack; import java.util.Iterator; import java.util.NoSuchElementException; /** * ...