Overfitting & Regularization

The Problem of overfitting

A common issue in machine learning or mathematical modeling is overfitting, which occurs when you build a model that not only captures the signal but also the noise in a dataset.

Because we want to create models that generalize and perform well on different data-points, we need to avoid overfitting.

In comes regularization, which is a powerful mathematical tool for reducing overfitting within our model. It does this by adding a penalty for model complexity or extreme parameter values, and it can be applied to different learning models: linear regression, logistic regression, and support vector machines to name a few.

Below is the linear regression cost function with an added regularization component.

The regularization component is really just the sum of squared coefficients of your model (your beta values), multiplied by a parameter, lambda.

Lambda

Lambda can be adjusted to help you find a good fit for your model. However, a value that is too low might not do anything, and one that is too high might actually cause you to underfit the model and lose valuable information. It’s up to the user to find the sweet spot.

Cross validation using different values of lambda can help you to identify the optimal lambda that produces the lowest out of sample error.

Regularization methods (L1 & L2)

The equation shown above is called Ridge Regression (L2) - the beta coefficients are squared and summed. However, another regularization method is Lasso Regreesion (L1), which sums the absolute value of the beta coefficients. Even more, you can combine Ridge and Lasso linearly to get Elastic Net Regression (both squared and absolute value components are included in the cost function).

L2 regularization tends to yield a “dense” solution, where the magnitude of the coefficients are evenly reduced. For example, for a model with 3 parameters, B1, B2, and B3 will reduce by a similar factor.

However, with L1 regularization, the shrinkage of the parameters may be uneven, driving the value of some coefficients to 0. In other words, it will produce a sparse solution. Because of this property, it is often used for feature selection- it can help identify the most predictive features, while zeroing the others.

It also a good idea to appropriately scale your features, so that your coefficients are penalized based on their predictive power and not their scale.

As you can see, regularization can be a powerful tool for reducing overfitting.

In the words of the great thinkers:

An in-depth look into theory and application of regularization.

Overfitting & Regularization的更多相关文章

  1. machine learning(13) -- solving the problem of overfitting:regularization

    solving the problem of overfitting:regularization 发生的在linear regression上面的overfitting问题 发生在logistic ...

  2. 深度学习(一)cross-entropy softmax overfitting regularization dropout

    一.Cross-entropy 我们理想情况是让神经网络学习更快 假设单模型: 只有一个输入,一个神经元,一个输出   简单模型: 输入为1时, 输出为0 神经网络的学习行为和人脑差的很多, 开始学习 ...

  3. Stanford机器学习笔记-3.Bayesian statistics and Regularization

    3. Bayesian statistics and Regularization Content 3. Bayesian statistics and Regularization. 3.1 Und ...

  4. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Regularization)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep ...

  5. Notes : <Hands-on ML with Sklearn & TF> Chapter 1

    <Hands-on ML with Sklearn & TF> Chapter 1 what is ml from experience E with respect to som ...

  6. 斯坦福大学CS224d课程目录

    https://www.zybuluo.com/hanxiaoyang/note/404582 Lecture 1:自然语言入门与次嵌入 1.1 Intro to NLP and Deep Learn ...

  7. 过拟合(Overfitting)和正规化(Regularization)

    过拟合: Overfitting就是指Ein(在训练集上的错误率)变小,Eout(在整个数据集上的错误率)变大的过程 Underfitting是指Ein和Eout都变大的过程 从上边这个图中,虚线的左 ...

  8. 机器学习(四)正则化与过拟合问题 Regularization / The Problem of Overfitting

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  9. How to avoid Over-fitting using Regularization?

    http://www.mit.edu/~9.520/scribe-notes/cl7.pdf https://en.wikipedia.org/wiki/Bayesian_interpretation ...

随机推荐

  1. Navicat Premium 连接Oracle 数据库

    昨天开始工作的时候听同事说:Navicat可以连各种数据库,包括Oracle,头一次听说!!!很是尴尬.现在记录一下怎么用Navicat连接Oracle.最重要的是,Navicat只支持32的Orac ...

  2. 消息队列第二篇:MessageQueue实战(课程订单)

    上一篇:消息队列介绍 本篇一开始就上代码,主要演练MessageQueue的实际应用.用户提交订单(消息发送),系统将订单发送到订单队列(Order Queue)中:订单管理系统(消息接收)端,监听消 ...

  3. grunt入门讲解7:项目脚手架grunt-init

    grunt-init是一个用于自动创建项目脚手架的工具.它会基于当前工作环境和你给出的一些配置选项构建一个完整的目录结构.至于其所生成的具体文件和内容,依赖于你所选择的模版和构建过程中你对具体信息所给 ...

  4. .NET 类库研究必备参考 添加微软企业库源码

    前不久,为大家提供了一个.NET 类库参考源码的网站,扣丁格鲁(谐音“coding guru”),使用了段时间,发现一些不方便的地方,特意做了一些更改,希望大家多提意见,下面是此次更改的地方. 更改1 ...

  5. sql学习. case + group by 都干了啥子事情

    select case pref_name when 'fudao' then 'siguo' when 'xiangchuan' then 'siguo' when 'aiyuan' then 's ...

  6. 【设计模式】—— 原型模式Prototype

    前言:[模式总览]——————————by xingoo 模式意图 由于有些时候,需要在运行时指定对象时哪个类的实例,此时用工厂模式就有些力不从心了.通过原型模式就可以通过拷贝函数clone一个原有的 ...

  7. 深入理解JAVA虚拟机阅读笔记4——虚拟机类加载机制

    虚拟机把描述类的Class文件加载到内存,并对数据进行校验.转换解析和初始化,最终形成可以被虚拟机直接使用的Java类型,这就是虚拟机的类加载机制. 在Java语言中,类型的加载.连接和初始化过程都是 ...

  8. Angular 动态组件

    Angular 动态组件 实现步骤 Directive HostComponent 动态组件 AdService 配置AppModule 需要了解的概念 Directive 我们需要一个Directi ...

  9. DAY2-Python学习笔记

    1.迭代器:可以直接作用于for循环的对象统称为可迭代对象:Iterable,使用isinstance()判断一个对象是否是Iterable对象: >>> from collecti ...

  10. Repeats SPOJ - REPEATS(重复次数最多的连续重复子串)

    论文题例8 https://blog.csdn.net/queuelovestack/article/details/53031731这个解释很好 其实,当枚举的重复子串长度为i时,我们在枚举r[i* ...