吴裕雄 python 熵权法确定特征权重
一、熵权法介绍
熵最先由申农引入信息论,目前已经在工程技术、社会经济等领域得到了非常广泛的应用。
熵权法的基本思路是根据各个特征和它对应的值的变异性的大小来确定客观权重。
一般来说,若某个特征的信息熵越小,表明该特征的值得变异(对整体的影响)程度越大,提供的信息量越多,在综合评价中所能起到
的作用也越大,其权重也就越大。相反,某个特征的信息熵越大,表明指标值得变异(对整体的影响)程度越小,提供的信息量也越少,
在综合评价中所起到的作用也越小,其权重也就越小。
二、熵权法赋权步骤
1. 数据标准化(数据归一化)
将各个指标的数据进行标准化(归一化)处理。
假设给定了k个特征,其中
(每个特征的值表示)。假设对各特征数据(值)标准化后的值为
,那么
。
i 表示特征序列,j 表示 i 特征序列对应的各个具体的值的序列,所谓的序列就是起到标号的作用,方便人们理解公式的运行过程。
2. 求各指标的信息熵
根据信息论中信息熵的定义,一组数据的信息熵。其中
,如果
,则定义
。
3. 确定各指标权重
根据信息熵的计算公式,计算出各个特征的信息熵为 。通过信息熵计算各指标的权重:
。
4. 对各个特征进行评分
根据计算出的指标权重,设Zl为第l个特征的最终得分,则 ,
import xlrd
import numpy as np #读数据并求熵
path=u"D:\\LearningResource\\myLearningData\\hostital.xls"
hn,nc=1,1
#hn为表头行数,nc为表头列数
sheetname=u'Sheet1' def readexcel(hn,nc):
data = xlrd.open_workbook(path)
table = data.sheet_by_name(sheetname)
nrows = table.nrows
data=[]
for i in range(hn,nrows):
data.append(table.row_values(i)[nc:])
return np.array(data) def entropy(data0):
#返回每个样本的指数
#样本数,指标个数
n,m=np.shape(data0)
#一行一个样本,一列一个指标
#下面是归一化
maxium=np.max(data0,axis=0)
minium=np.min(data0,axis=0)
data= (data0-minium)*1.0/(maxium-minium)
##计算第j项指标,第i个样本占该指标的比重
sumzb=np.sum(data,axis=0)
data=data/sumzb
#对ln0处理
a=data*1.0
a[np.where(data==0)]=0.0001
# #计算每个指标的熵
e=(-1.0/np.log(n))*np.sum(data*np.log(a),axis=0)
print(e)
# #计算权重
w=(1-e)/np.sum(1-e)
recodes=np.sum(data0*w,axis=1)
return recodes data=readexcel(hn,nc)
grades=entropy(data)
print(grades)

原数据集

吴裕雄 python 熵权法确定特征权重的更多相关文章
- 吴裕雄 python 机器学习——数据预处理过滤式特征选取SelectPercentile模型
from sklearn.feature_selection import SelectPercentile,f_classif #数据预处理过滤式特征选取SelectPercentile模型 def ...
- 吴裕雄 python 机器学习——数据预处理过滤式特征选取VarianceThreshold模型
from sklearn.feature_selection import VarianceThreshold #数据预处理过滤式特征选取VarianceThreshold模型 def test_Va ...
- 吴裕雄 python 机器学习——数据预处理包裹式特征选取模型
from sklearn.svm import LinearSVC from sklearn.datasets import load_iris from sklearn.feature_select ...
- 基于topsis和熵权法
% % X 数据矩阵 % % n 数据矩阵行数即评价对象数目 % % m 数据矩阵列数即经济指标数目 % % B 乘以熵权的数据矩阵 % % Dist_max D+ 与最大值的距离向量 % % Dis ...
- 熵权法(the Entropy Weight Method)以及MATLAB实现
按照信息论基本原理的解释,信息是系统有序程度的一个度量,熵是系统无序程度的一个度量:如果指标的信息熵越小,该指标提供的信息量越小,在综合评价中所起作用理当越小,权重就应该越低.因此,可利用信息熵这个工 ...
- 熵权法原理及matlab代码实现
参考原理博客地址https://blog.csdn.net/u013713294/article/details/53407087 一.基本原理 在信息论中,熵是对不确定性的一种度量.信息量越大,不确 ...
- 吴裕雄 python深度学习与实践(17)
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import time # 声明输 ...
- 吴裕雄 python神经网络 水果图片识别(4)
# coding: utf-8 # In[1]:import osimport numpy as npfrom skimage import color, data, transform, io # ...
- 吴裕雄 python神经网络 水果图片识别(2)
import osimport numpy as npimport matplotlib.pyplot as pltfrom skimage import color,data,transform,i ...
随机推荐
- Java 1-Java 基础语法
一个Java程序可以认为是一系列对象的集合,而这些对象通过调用彼此的方法来协同工作.下面简要介绍下类.对象.方法和实例变量的概念. 对象:对象是类的一个实例,有状态和行为.例如,一条狗是一个对象,它的 ...
- KVM总结-KVM性能优化之CPU优化
前言 任何平台根据场景的不同,都有相应的优化.不一样的硬件环境.网络环境,同样的一个平台,它跑出的效果也肯定不一样.就好比一辆法拉利,在高速公路里跑跟乡村街道跑,速度和激情肯定不同… 所以,我们做运维 ...
- oracle补齐日期
生成日期列表 SELECT to_date( as first_login_day, ROWNUM - FROM DUAL CONNECT BY ROWNUM <= trunc(sysdate ...
- rpm和yum的区别
rpm 只能安装已经下载到本地机器上的rpm 包, yum能在线下载并安装rpm包,能更新系统,且还能自动处理包与包之间的依赖问题,这个是rpm 工具所不具备的.
- 【Linux】【Maven】Linux下安装和配置Maven
创建maven的文件夹并下载maven的tar包到此文件夹中 //进入一个目录 cd /usr/local//创建一个文件夹 mkdir maven//下载maven的tar包 wget http:/ ...
- 什么是事务、事务特性、事务隔离级别、spring事务传播特性
1.什么是事务: 事务是程序中一系列严密的操作,所有操作执行必须成功完成,否则在每个操作所做的更改将会被撤销,这也是事务的原子性(要么成功,要么失败). 2.事务特性: 事务特性分为四个:原子性(At ...
- bootstrap-datepicker实现日期input readonly 标签中选择时间功能
引用datepicker css,js,zh-CH文件 ps: 都是基于bootstrap,所以得先引入bootstrap文件才可以使用 <link href="https://cdn ...
- 代码:PC 链接列表面板border的一种做法(每行之间有分割线)
PC 链接列表面板,border的一种做法 做页面经常遇到一种问题,上面是标题,下面是单行链接列表.为了保证后台套页面方便,所有列表项必须完全一样.但我们无法解决第一行或最后一行多出来的分割线. 使用 ...
- Oracle exp/imp 导出/导入
set NLS_LANG=AMERICAN_AMERICA.AL32UTF8 exp jjhd_test/11111111@a_syj file="d:\jjhd_test.dmp" ...
- Spark面对OOM问题的解决方法及优化总结 (转载)
转载地址: http://blog.csdn.net/yhb315279058/article/details/51035631 Spark中的OOM问题不外乎以下两种情况 map执行中内存溢 ...