更好的阅读体验

Portal

Portal1: Codeforces

Portal2: Luogu

Description

In one very old text file there was written Great Wisdom. This Wisdom was so Great that nobody could decipher it, even Phong - the oldest among the inhabitants of Mainframe. But still he managed to get some information from there. For example, he managed to learn that User launches games for pleasure - and then terrible Game Cubes fall down on the city, bringing death to those modules, who cannot win the game...

For sure, as guard Bob appeared in Mainframe many modules stopped fearing Game Cubes. Because Bob (as he is alive yet) has never been defeated by User, and he always meddles with Game Cubes, because he is programmed to this.

However, unpleasant situations can happen, when a Game Cube falls down on Lost Angles. Because there lives a nasty virus - Hexadecimal, who is... mmm... very strange. And she likes to play very much. So, willy-nilly, Bob has to play with her first, and then with User.

This time Hexadecimal invented the following entertainment: Bob has to leap over binary search trees with n nodes. We should remind you that a binary search tree is a binary tree, each node has a distinct key, for each node the following is true: the left sub-tree of a node contains only nodes with keys less than the node's key, the right sub-tree of a node contains only nodes with keys greater than the node's key. All the keys are different positive integer numbers from \(1\) to \(n\). Each node of such a tree can have up to two children, or have no children at all (in the case when a node is a leaf).

In Hexadecimal's game all the trees are different, but the height of each is not lower than h. In this problem «height» stands for the maximum amount of nodes on the way from the root to the remotest leaf, the root node and the leaf itself included. When Bob leaps over a tree, it disappears. Bob gets the access to a Cube, when there are no trees left. He knows how many trees he will have to leap over in the worst case. And you?

Input

The input data contains two space-separated positive integer numbers \(n\) and \(h (n \le 35, h \le n)\).

Output

Output one number - the answer to the problem. It is guaranteed that it does not exceed \(9 \times 10^18\).

Sample Input1

3 2

Sample Output1

5

Sample Input2

3 3

Sample Output2

4

Description in Chinese

用\(n\)个点组成二叉树,问高度大于等于\(h\)的有多少个。

Solution

这题\(n\)的范围很小,只有\(35\),所以我们用\(O(n^4)\)的动态规划来解决。

dp[i][j]表示用\(i\)个点,构成高度为\(j\)的二叉树的个数。

动态转移方程为\(dp[i][max(j, k) + 1] += dp[L][j] \times dp[R][k]\),其中\(i\)表示所用的结点数,\(j\)是枚举左子树的结点数,\(L\)表示左子树的结点总数,\(k\)是枚举左子树的结点数,\(R\)表示右子树的结点总数。

答案就是\(\sum^{n}_{i = h}{dp[n][i]}\)。

Code

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath> using namespace std; typedef long long LL;
const int MAXN = 40;
int n, h;
LL dp[MAXN][MAXN];
int main() {
scanf("%d%d", &n, &h);
dp[0][0] = 1;//用0个结点,可以构造出1棵深度为0的二叉树
for (int i = 1; i <= n; i++)//枚举总结点数
for (int L = 0; L < i; L++) {//枚举左子树的结点数
int R = i - L - 1;//计算剩下的结点数,再减去根结点,就是右子树的结点数
for (int j = 0; j <= L; j++)//左子树
for (int k = 0; k <= R; k++)//右子树
dp[i][max(j, k) + 1] += dp[L][j] * dp[R][k];//因为是累计可行方案所以是乘法
}
LL ans = 0;
for (int i = h; i <= n; i++)
ans += dp[n][i];//累计答案
printf("%lld\n", ans);
return 0;
}

『题解』Codeforces9D How many trees?的更多相关文章

  1. 『题解』洛谷P1063 能量项链

    原文地址 Problem Portal Portal1:Luogu Portal2:LibreOJ Portal3:Vijos Description 在\(Mars\)星球上,每个\(Mars\)人 ...

  2. 『题解』Codeforces1142A The Beatles

    更好的阅读体验 Portal Portal1: Codeforces Portal2: Luogu Description Recently a Golden Circle of Beetlovers ...

  3. 『题解』Codeforces1142B Lynyrd Skynyrd

    更好的阅读体验 Portal Portal1: Codeforces Portal2: Luogu Description Recently Lynyrd and Skynyrd went to a ...

  4. 『题解』洛谷P1993 小K的农场

    更好的阅读体验 Portal Portal1: Luogu Description 小\(K\)在\(\mathrm MC\)里面建立很多很多的农场,总共\(n\)个,以至于他自己都忘记了每个农场中种 ...

  5. 『题解』洛谷P2296 寻找道路

    更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Description 在有向图\(\mathrm G\)中,每条边的长度均为\(1\),现给定起点和终点 ...

  6. 『题解』洛谷P1351 联合权值

    更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Description 无向连通图\(\mathrm G\)有\(n\)个点,\(n - 1\)条边.点从 ...

  7. 『题解』Codeforces656E Out of Controls

    更好的阅读体验 Portal Portal1: Codeforces Portal2: Luogu Description You are given a complete undirected gr ...

  8. 『题解』洛谷P2170 选学霸

    更好的阅读体验 Portal Portal1: Luogu Description 老师想从\(N\)名学生中选\(M\)人当学霸,但有\(K\)对人实力相当,如果实力相当的人中,一部分被选上,另一部 ...

  9. 『题解』洛谷P1083 借教室

    更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Portal3: Vijos Description 在大学期间,经常需要租借教室.大到院系举办活动,小到 ...

随机推荐

  1. Spring中@Import的各种用法以及ImportAware接口

    @Import 注解 @Import注解提供了和XML中<import/>元素等价的功能,实现导入的一个或多个配置类.@Import即可以在类上使用,也可以作为元注解使用. @Target ...

  2. 将自定义功能添加到Spring Data Repository

    Spring Data非常方便,可以加快开发速度,避免使用样板代码. 但是,在某些情况下,注释查询不足,而无法达到您可能希望实现的自定义功能. 因此,Spring Data允许我们向Spring Da ...

  3. C语言-查找一个元素在数组中的位置

    #include<stdio.h> #include <stdlib.h> #include <time.h> int search(int key, int a[ ...

  4. Head First设计模式——观察者模式

    1.气象监测应用,错误示范 有一个气象站,分别有三个装置:温度感应装置,湿度感应装置,气压感应装置.WeathData对象跟踪气象站数据,WeathData有MeasurmentsChanged()方 ...

  5. [HNOI2007] 理想正方形 二维ST表

    题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一行为3个整数,分别表示a,b,n的值 第二行至 ...

  6. Kubernetes的Service运行原理

    一.为什么Servcie能定位到Pod 因为Pod的IP是不固定的,所以Kubernetes需要Service,除此之外它还可以在多个Pod间负载均衡 Service的访问入口,其实是宿主机的kube ...

  7. .NET Core ORM 类库Petapoco中对分页Page添加Order By对查询的影响

    最近一直在使用Petapoco+Entity Framework Core结合开发一套系统. 使用EFCore进行Code First编码,使用PMC命令生成数据库表的信息. 使用Petapoco进行 ...

  8. java 线程池那点事儿

    1.为什么要用线程池 2.常见线程池以及参数 2.1 创建线程池 2.2 线程池参数 2.3 常见线程池 3.执行流程 4.健康检查 1.为什么要用线程池 线程池提供了一种任务的提交与任务的执行解偶的 ...

  9. Ubuntu中用户名密码和root密码修改

    用户名密码和root密码不是同一个密码 重置(修改)root密码 ubuntu的root初始密码是随机的,每次开机都有一个新的root密码修改方法如下: 1.sudo passwd root 2.此处 ...

  10. .Net Core 3.0 IdentityServer4 快速入门02

    .Net Core 3.0 IdentityServer4 快速入门 —— resource owner password credentials(密码模式) 一.前言 OAuth2.0默认有四种授权 ...