L1和L2正则化。L1为什么能产生稀疏值,L2更平滑
参考博客:https://zhuanlan.zhihu.com/p/35356992
https://zhuanlan.zhihu.com/p/25707761
https://www.zhihu.com/question/37096933/answer/70426653
首先正则化项一般是模型复杂度的单调递增函数,模型越复杂,正则化的值会越大。
正则化是结构风险最小化的一种策略实现,在经验风险最小化的基础上(也就是训练误差最小化),尽可能采用简单的模型,以此提高泛化预测精度。
经验风险较小的模型可能较复杂,这时会使正则化项变大。正则化的作用就是选择经验风险和模型复杂度同时较小的模型。
同时也符合奥卡姆剃刀原理:在所有可能选择的模型中,能够很好解释数据并且十分简单才是好的模型。通过降低模型的复杂度,得到更小的泛化误差,降低过拟合程度。
h(w)是目标函数 f(w)是没有加正则化的目标函数 c|w|是L1正则项,要是0点成为最可能的点,因为在0点处不可导,但是只需让0点左右的导数异号即可。
最终解的:
,所以只要满足这个条件,0点都是最值点。
两种 regularization 能不能把最优的 w变成 0,取决于原先的损失函数在 0 点处的导数。
如果本来导数不为 0,那么施加 L2 regularization 后导数依然不为 0,最优的 x 也不会变成 0。
而施加 L1 regularization 时,只要 regularization 项的系数 C 大于原先损失函数在 0 点处的导数的绝对值,x = 0 就会变成一个极小值点。
上面只分析了一个参数 w。事实上 L1 regularization 会使得许多参数的最优值变成 0,这样模型就稀疏了。
作者:王赟 Maigo
链接:https://www.zhihu.com/question/37096933/answer/70426653
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
、
L1和L2正则化。L1为什么能产生稀疏值,L2更平滑的更多相关文章
- L1正则化和L2正则化
L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择 L2正则化可以防止模型过拟合(overfitting):一定程度上,L1也可以防止过拟合 一.L1正则化 1.L1正则化 需注意, ...
- 机器学习中的L1、L2正则化
目录 1. 什么是正则化?正则化有什么作用? 1.1 什么是正则化? 1.2 正则化有什么作用? 2. L1,L2正则化? 2.1 L1.L2范数 2.2 监督学习中的L1.L2正则化 3. L1.L ...
- L1和L2正则化(转载)
[深度学习]L1正则化和L2正则化 在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况 ...
- L1与L2正则化
目录 过拟合 结构风险最小化原理 正则化 L2正则化 L1正则化 L1与L2正则化 参考链接 过拟合 机器学习中,如果参数过多.模型过于复杂,容易造成过拟合. 结构风险最小化原理 在经验风险最小化(训 ...
- Kaldi中的L2正则化
steps/nnet3/train_dnn.py --l2-regularize-factor 影响模型参数的l2正则化强度的因子.要进行l2正则化,主要方法是在配置文件中使用'l2-regulari ...
- 【深度学习】L1正则化和L2正则化
在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况.正则化是机器学习中通过显式的控制模 ...
- L1正则化比L2正则化更易获得稀疏解的原因
我们知道L1正则化和L2正则化都可以用于降低过拟合的风险,但是L1正则化还会带来一个额外的好处:它比L2正则化更容易获得稀疏解,也就是说它求得的w权重向量具有更少的非零分量. 为了理解这一点我们看一个 ...
- 4.机器学习——统计学习三要素与最大似然估计、最大后验概率估计及L1、L2正则化
1.前言 之前我一直对于“最大似然估计”犯迷糊,今天在看了陶轻松.忆臻.nebulaf91等人的博客以及李航老师的<统计学习方法>后,豁然开朗,于是在此记下一些心得体会. “最大似然估计” ...
- 机器学习 - 正则化L1 L2
L1 L2 Regularization 表示方式: $L_2\text{ regularization term} = ||\boldsymbol w||_2^2 = {w_1^2 + w_2^2 ...
- 正则化 L1 L2
机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1ℓ1-norm和ℓ2ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数. L1正则化和 ...
随机推荐
- 重学 Java 设计模式:实战享元模式「基于Redis秒杀,提供活动与库存信息查询场景」
作者:小傅哥 博客:https://bugstack.cn 沉淀.分享.成长,让自己和他人都能有所收获! 一.前言 程序员的上下文是什么? 很多时候一大部分编程开发的人员都只是关注于功能的实现,只 ...
- 迁移AndroidX
1. 前言 AndroidX replaces the original support library APIs with packages in the androidx namespace. O ...
- GetLastError返回值含义
GetLastError的返回值的含义: (0)-操作成功完成. (1)-功能错误. (2)- 系统找不到指定的文件. (3)-系统找不到指定的路径. (4)-系统无法打开文件. (5)-拒绝访问. ...
- C++入门-控制台版的通讯录管理系统
通讯录管理系统 1.系统需求 通讯录是一个可以记录亲人.好友信息的工具. 本教程主要利用C++来实现一个通讯录管理系统 系统中需要实现的功能如下: 添加联系人:向通讯录中添加新人,信息包括(姓名.性别 ...
- Java使用SQLServerBulKCopy实现批量插入SQLSqerver数据库
这是CodingSir的帖子说的(由于不够详细,我现在提供给详细的,上手即用): Microsoft SQL Server 的bcp命令可以快速将大型文件复制插入到数据库中,C#提供了SqlBulkC ...
- django xadmin 配置过程
1.拷贝xadmin的一个下的一个xadmin文件夹放到项目里
- -手写Spring注解版本&事务传播行为
视频参考C:\Users\Administrator\Desktop\蚂蚁3期\[www.zxit8.com] 0018-(每特教育&每特学院&蚂蚁课堂)-3期-源码分析-手写Spri ...
- xutils工具上传日志文件--后台服务器的搭建
在上一篇文章中使用xutils将手机上保存的日志上传到后台服务器中,现在我们来讲后台服务器是如何搭建的 后台服务器采用jsp+sevlet+mysql的框架 首先讲mysql数据库的表的建立 在fil ...
- mysql 中order by的优化
当时看了尚硅谷周阳老师的mysql视频优化在order by 优化的时候还存在一点问题:后来阅读了mysql的官方文档,对该问题已经测定研究清楚了 内容如下: http://blog.51cto.co ...
- java面试基础必备
一.Java基础 1. String类为什么是final的. 2. HashMap的源码,实现原理,底层结构. 3. 说说你知道的几个Java集合类:list.set.queue.map实现类咯... ...