图   7.1

 

import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np mpl.rcParams["font.sans-serif"]=["SimHei"]
mpl.rcParams["axes.unicode_minus"]=False fig, ax1 = plt.subplots()
t=np.arange(0.05, 10.0, 0.01)
s1=np.exp(t)
ax1.plot(t, s1, c="b", ls="-") ax1.set_xlabel("x坐标轴")
ax1.set_ylabel("以e为底指数函数", color="b")
ax1.tick_params("y", colors="b") ax2=ax1.twinx() s2=np.cos(t**2)
ax2.plot(t, s2, c="r", ls=":") ax2.set_ylabel("余弦函数", color="r")
ax2.tick_params("y", colors="r") plt.show()

=====================================================

图   7.2

 

import matplotlib.pyplot as plt
import numpy as np x1=np.linspace(0, 2*np.pi, 400)
y1=np.cos(x1**2) x2=np.linspace(0.01, 10, 100)
y2=np.sin(x2) x3=np.random.rand(100)
y3=np.linspace(0, 3, 100) x4=np.arange(0, 6, 0.5)
y4=np.power(x4, 3) fig, ax=plt.subplots(2, 2) ax1=ax[0, 0]
ax1.plot(x1, y1) ax2=ax[0, 1]
ax2.plot(x2, y2) ax3=ax[1, 0]
ax3.scatter(x3, y3) ax4=ax[1, 1]
ax4.scatter(x4, y4) plt.show()

=====================================================

 

图   7.3

 

import matplotlib.pyplot as plt
import numpy as np x1=np.linspace(0, 2*np.pi, 400)
y1=np.cos(x1**2) x2=np.linspace(0.01, 10, 100)
y2=np.sin(x2) x3=np.random.rand(100)
y3=np.linspace(0, 3, 100) x4=np.arange(0, 6, 0.5)
y4=np.power(x4, 3) fig, ax=plt.subplots(2, 2, sharex="all") ax1=ax[0, 0]
ax1.plot(x1, y1) ax2=ax[0, 1]
ax2.plot(x2, y2) ax3=ax[1, 0]
ax3.scatter(x3, y3) ax4=ax[1, 1]
ax4.scatter(x4, y4) plt.show()

=====================================================

 

图   7.4

 

import matplotlib.pyplot as plt
import numpy as np x1=np.linspace(0, 2*np.pi, 400)
y1=np.cos(x1**2) x2=np.linspace(0.01, 10, 100)
y2=np.sin(x2) x3=np.random.rand(100)
y3=np.linspace(0, 3, 100) x4=np.arange(0, 6, 0.5)
y4=np.power(x4, 3) fig, ax=plt.subplots(2, 2, sharex="none") ax1=ax[0, 0]
ax1.plot(x1, y1) ax2=ax[0, 1]
ax2.plot(x2, y2) ax3=ax[1, 0]
ax3.scatter(x3, y3) ax4=ax[1, 1]
ax4.scatter(x4, y4) plt.show()

=====================================================

 

图   7.5

 

import matplotlib.pyplot as plt
import numpy as np x1=np.linspace(0, 2*np.pi, 400)
y1=np.cos(x1**2) x2=np.linspace(0.01, 10, 100)
y2=np.sin(x2) x3=np.random.rand(100)
y3=np.linspace(0, 3, 100) x4=np.arange(0, 6, 0.5)
y4=np.power(x4, 3) fig, ax=plt.subplots(2, 2, sharex="row") ax1=ax[0, 0]
ax1.plot(x1, y1) ax2=ax[0, 1]
ax2.plot(x2, y2) ax3=ax[1, 0]
ax3.scatter(x3, y3) ax4=ax[1, 1]
ax4.scatter(x4, y4) plt.show()

=====================================================

 

图   7.6

import matplotlib.pyplot as plt
import numpy as np x1=np.linspace(0, 2*np.pi, 400)
y1=np.cos(x1**2) x2=np.linspace(0.01, 10, 100)
y2=np.sin(x2) x3=np.random.rand(100)
y3=np.linspace(0, 3, 100) x4=np.arange(0, 6, 0.5)
y4=np.power(x4, 3) fig, ax=plt.subplots(2, 2, sharex="col") ax1=ax[0, 0]
ax1.plot(x1, y1) ax2=ax[0, 1]
ax2.plot(x2, y2) ax3=ax[1, 0]
ax3.scatter(x3, y3) ax4=ax[1, 1]
ax4.scatter(x4, y4) plt.show()

=====================================================

 

图   7.7

 

import matplotlib.pyplot as plt
import numpy as np x=np.linspace(0.0, 10.0, 200)
y=np.cos(x)*np.sin(x)
y2=np.exp(-x)*np.sin(x)
y3=3*np.sin(x)
y4=np.power(x, 0.5) fig, (ax1, ax2, ax3, ax4)=plt.subplots(4, 1, sharex="all") fig.subplots_adjust(hspace=0) ax1.plot(x, y, ls="-", lw=2)
ax1.set_yticks(np.arange(-0.6, 0.7, 0.2))
ax1.set_ylim(-0.7, 0.7) ax2.plot(x, y2, ls="-", lw=2)
ax2.set_yticks(np.arange(-0.05, 0.36, 0.1))
ax2.set_ylim(-0.1, 0.4) ax3.plot(x, y3, ls="-", lw=2)
ax3.set_yticks(np.arange(-3, 4, 1))
ax3.set_ylim(-3.5, 3.5) ax4.plot(x, y4, ls="-", lw=2)
ax4.set_yticks(np.arange(0.0, 3.6, 0.5))
ax4.set_ylim(0.0, 4.0) plt.show()

=====================================================

 

图   7.8

 

import matplotlib.pyplot as plt
import numpy as np x1=np.linspace(0, 2*np.pi, 400)
y1=np.cos(x1**2) x2=np.linspace(0.01, 10, 100)
y2=np.sin(x2) x3=np.random.rand(100)
y3=np.linspace(0, 3, 100) x4=np.arange(0, 6, 0.5)
y4=np.power(x4, 3) fig, ax=plt.subplots(2, 2) ax1=plt.subplot(221)
ax1.plot(x1, y1) ax2=plt.subplot(222)
ax2.plot(x2, y2) ax3=plt.subplot(223)
ax3.scatter(x3, y3) ax4=plt.subplot(224, sharex=ax1)
ax4.scatter(x4, y4) plt.show()

=====================================================

图   7.9

import matplotlib.pyplot as plt
import numpy as np x1=np.linspace(0, 2*np.pi, 400)
y1=np.cos(x1**2) x2=np.linspace(0.01, 10, 100)
y2=np.sin(x2) x3=np.random.rand(100)
y3=np.linspace(0, 3, 100) x4=np.arange(0, 6, 0.5)
y4=np.power(x4, 3) fig, ax=plt.subplots(2, 2) ax1=plt.subplot(221)
ax1.plot(x1, y1) ax2=plt.subplot(222)
ax2.plot(x2, y2) ax3=plt.subplot(223) plt.autoscale(enable=True, axis="both", tight=True) ax3.scatter(x3, y3) ax4=plt.subplot(224, sharex=ax1)
ax4.scatter(x4, y4) plt.show()

=====================================================

 

 

《Python数据可视化之matplotlib实践》 源码 第二篇 精进 第七章的更多相关文章

  1. Python数据可视化——使用Matplotlib创建散点图

    Python数据可视化——使用Matplotlib创建散点图 2017-12-27 作者:淡水化合物 Matplotlib简述: Matplotlib是一个用于创建出高质量图表的桌面绘图包(主要是2D ...

  2. python 数据可视化(matplotlib)

    matpotlib 官网 :https://matplotlib.org/index.html matplotlib 可视化示例:https://matplotlib.org/gallery/inde ...

  3. Python数据可视化库-Matplotlib(一)

    今天我们来学习一下python的数据可视化库,Matplotlib,是一个Python的2D绘图库 通过这个库,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率图,条形图,错误图,散点图等等 废 ...

  4. Python数据可视化之Matplotlib实现各种图表

    数据分析就是将数据以各种图表的形式展现给领导,供领导做决策用,因此熟练掌握饼图.柱状图.线图等图表制作是一个数据分析师必备的技能.Python有两个比较出色的图表制作框架,分别是Matplotlib和 ...

  5. Python数据可视化利器Matplotlib,绘图入门篇,Pyplot介绍

    Pyplot matplotlib.pyplot是一个命令型函数集合,它可以让我们像使用MATLAB一样使用matplotlib.pyplot中的每一个函数都会对画布图像作出相应的改变,如创建画布.在 ...

  6. Python数据可视化库-Matplotlib(二)

    我们接着上次的继续讲解,先讲一个概念,叫子图的概念. 我们先看一下这段代码 import matplotlib.pyplot as plt fig = plt.figure() ax1 = fig.a ...

  7. Python数据可视化之matplotlib

    常用模块导入 import numpy as np import matplotlib import matplotlib.mlab as mlab import matplotlib.pyplot ...

  8. python数据可视化(matplotlib)

  9. python数据可视化-matplotlib入门(7)-从网络加载数据及数据可视化的小总结

    除了从文件加载数据,另一个数据源是互联网,互联网每天产生各种不同的数据,可以用各种各样的方式从互联网加载数据. 一.了解 Web API Web 应用编程接口(API)自动请求网站的特定信息,再对这些 ...

  10. Python数据可视化的四种简易方法

    摘要: 本文讲述了热图.二维密度图.蜘蛛图.树形图这四种Python数据可视化方法. 数据可视化是任何数据科学或机器学习项目的一个重要组成部分.人们常常会从探索数据分析(EDA)开始,来深入了解数据, ...

随机推荐

  1. LLM应用实战:当图谱问答(KBQA)集成大模型(三)

    1. 背景 最近比较忙(也有点茫),本qiang~想切入多模态大模型领域,所以一直在潜心研读中... 本次的更新内容主要是响应图谱问答集成LLM项目中反馈问题的优化总结,对KBQA集成LLM不熟悉的客 ...

  2. 两个Excel表格核对 excel表格中# DIV/0 核对两个表格的差异,合并运算VS高级筛选

    两个Excel表格核对   excel表格中# DIV/0 核对两个表格的差异,合并运算VS高级筛选 1.两列顺序一样的数据核对 方法1:加一个辅助列,=B2=C2 结果为FALSE的就是不相同的 方 ...

  3. 在 AWS 平台搭建 DolphinScheduler

    AWS平台搭建 DolphinScheduler DolphinScheduler 是当前热门的调度器,提供了完善的可视化.拖拉拽式的调度.在 AWS 平台上提供了 airflow 与 step fu ...

  4. [WPF]用HtmlTextBlock实现消息对话框的内容高亮和跳转

    动手写一个简单的消息对话框一文介绍了如何实现满足常见应用场景的消息对话框.但是内容区域的文字仅仅起到信息展示作用,对于需要部分关键字高亮,或者部分内容有交互性的场景(例如下图提示信息中的"w ...

  5. 抓取豆瓣电影TOP250标题-年份-评分-评分人数

    import csv import re import requests headers = { 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; ...

  6. 卷积神经网络中nn.Conv2d()和nn.MaxPool2d()以及卷积神经网络实现minist数据集分类

    卷积神经网络中nn.Conv2d()和nn.MaxPool2d() 卷积神经网络之Pythorch实现: nn.Conv2d()就是PyTorch中的卷积模块 参数列表 参数 作用 in_channe ...

  7. 工控必备!NXP i.MX 8M Mini开发板规格书资料分享,高性能低功耗!

    1 核心板简介 创龙科技SOM-TLIMX8-B是一款基于NXP i.MX 8M Mini的四核ARM Cortex-A53 + 单核ARM Cortex-M4异构多核处理器设计的高端工业级核心板,A ...

  8. 福利来了!MoneyPrinterPlus可以自动配置环境和自动运行了

    之前开源了MoneyPrinterPlus,可以实现批量混剪视频,一键生成视频和自动发布视频的功能. 但是经常会看到小伙伴在安装过程中遇到很多问题.所以这篇文章的目的就是告诉大家怎么使用MoneyPr ...

  9. 存储系列DAS,SAN,NAS常见网络架构

    随着主机.磁盘.网络等技术的发展,对于承载大量数据存储的服务器来说,服务器内置存储空间,或者说内置磁盘往往不足以满足存储需要.因此,在内置存储之外,服务器需要采用外置存储的方式扩展存储空间,今天在这里 ...

  10. TIER 2: Archetype

    TIER 2: Archetype 扫描 nmap 使用 nmap 进行扫描目标 IP,发现目标是 Windows 服务器,开放 SMB 和 SQL Server 服务. SMB SMB 之前已经接触 ...