解题思路

首先考虑最暴力的做法。对于每一步,我们都可以枚举每一条边,然后更新每两点之间经过\(k\)条边的最短路径。但是这样复杂度无法接受,我们考虑优化。

由于点数较少(其实最多只有\(200\)个点),\(N\)较大,考虑优化\(N\)。我们发现,其实可以直接从经过\(i\)条边的最短路和经过\(j\)条边的最短路推出经过\(i+j\)条边的最短路。这样的话,我们可以把每两点间的最短路保存下来,然后用类似于矩阵快速幂的做法就可以了。

最后为了不超时,我们需要将点的编号离散。最后时间复杂度是\(O(T^3logN)\)。

参考程序

#include <cstdio>
#include <cstring>
#include <map>
#define LL long long
using namespace std; const LL INF = 2147483647;
const LL MaxT = 110, MaxPoint = 210;
LL N, T, S, E;
LL Length[ MaxT ], I1[ MaxT ], I2[ MaxT ];
LL Num; namespace myHash {
LL Reflection[ 1010 ];
map< LL, LL > Map; void Hash() {
memset( Reflection, 0, sizeof( Reflection ) );
Map.clear();
for( LL i = 1; i <= T; ++i ) {
if( Map.find( I1[ i ] ) == Map.end() ) Map[ I1[ i ] ] = 1;
if( Map.find( I2[ i ] ) == Map.end() ) Map[ I2[ i ] ] = 1;
}
LL Last = 0;
for( map< LL, LL >::iterator it = Map.begin(); it != Map.end(); ++it )
Reflection[ ( *it ).first ] = ++Last;
Num = Last;
for( LL i = 1; i <= T; ++i ) {
I1[ i ] = Reflection[ I1[ i ] ];
I2[ i ] = Reflection[ I2[ i ] ];
}
return;
}
}//myHash struct Matrix {
LL A[ MaxPoint ][ MaxPoint ];
void Clear() {
for( LL i = 1; i <= 200; ++i )
for( LL j = 1; j <= 200; ++j )
A[ i ][ j ] = INF;
return;
}
Matrix operator * ( const Matrix Other ) const {
Matrix Ans;
Ans.Clear();
for( LL i = 1; i <= Num; ++i )
for( LL j = 1; j <= Num; ++j )
for( LL k = 1; k <= Num; ++k )
Ans.A[ i ][ j ] = min( Ans.A[ i ][ j ], A[ i ][ k ] + Other.A[ k ][ j ] );
return Ans;
}
}; Matrix Basic, Ans; void Init() {
Basic.Clear();
Ans.Clear();
for( int i = 1; i <= 200; ++i ) Ans.A[ i ][ i ] = 0;
for( int i = 1; i <= T; ++i ) {
Basic.A[ I1[ i ] ][ I2[ i ] ] = min( Basic.A[ I1[ i ] ][ I2[ i ] ], Length[ i ] );
Basic.A[ I2[ i ] ][ I1[ i ] ] = min( Basic.A[ I2[ i ] ][ I1[ i ] ], Length[ i ] );
}
return;
} int main() {
scanf( "%lld%lld%lld%lld", &N, &T, &S, &E );
for( LL i = 1; i <= T; ++i )
scanf( "%lld%lld%lld", &Length[ i ], &I1[ i ], &I2[ i ] );
myHash::Hash();
Init();
for( ; N; N >>= 1, Basic = Basic * Basic )
if( N & 1 ) Ans = Basic * Ans;
printf( "%lld\n", Ans.A[ myHash::Reflection[ S ] ][ myHash::Reflection[ E ] ] );
return 0;
}

POJ 3613 [ Cow Relays ] DP,矩阵乘法的更多相关文章

  1. poj 3613 Cow Relays【矩阵快速幂+Floyd】

    !:自环也算一条路径 矩阵快速幂,把矩阵乘法的部分替换成Floyd(只用一个点扩张),这样每"乘"一次,就是经过增加一条边的最短路,用矩阵快速幂优化,然后因为边数是100级别的,所 ...

  2. poj 3613 Cow Relays(矩阵的图论意义)

    题解 用一个矩阵来表示一个图的边的存在性,即矩阵C[i,j]=1表示有一条从i到j的有向边C[i,j]=0表示没有从i到j的边.这个矩阵的k次方后C[i,j]就表示有多少条从i到j恰好经过k条边的路径 ...

  3. Poj 3613 Cow Relays (图论)

    Poj 3613 Cow Relays (图论) 题目大意 给出一个无向图,T条边,给出N,S,E,求S到E经过N条边的最短路径长度 理论上讲就是给了有n条边限制的最短路 solution 最一开始想 ...

  4. 【floyd+矩阵乘法】POJ 3613 Cow Relays

    Description For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a rel ...

  5. poj 3613 Cow Relays

    Cow Relays Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5411   Accepted: 2153 Descri ...

  6. POJ 3613 Cow Relays(floyd+快速幂)

    http://poj.org/problem?id=3613 题意: 求经过k条路径的最短路径. 思路: 如果看过<矩阵乘法在信息学的应用>这篇论文就会知道 现在我们在邻接矩阵中保存距离, ...

  7. POJ 3613 Cow Relays (floyd + 矩阵高速幂)

    题目大意: 求刚好经过K条路的最短路 我们知道假设一个矩阵A[i][j] 表示表示 i-j 是否可达 那么 A*A=B  B[i][j]  就表示   i-j 刚好走过两条路的方法数 那么同理 我们把 ...

  8. POJ 3613 Cow Relays 恰好n步的最短路径

    http://poj.org/problem?id=3613 题目大意: 有T条路.从s到e走n步,求最短路径. 思路: 看了别人的... 先看一下Floyd的核心思想: edge[i][j]=min ...

  9. POJ 3613 Cow Relays【k边最短路】

    题目链接:http://poj.org/problem?id=3613 题目大意: 给出n头牛,t条有向边,起点以及终点,限制每头牛放在一个点上,(一个点上可以放多头牛),从起点开始进行接力跑到终点, ...

随机推荐

  1. java生成0~9个9个不相等的整数

    HashSet<Integer> hs=new HashSet<Integer>(); Integer i=0; while (i<9){ int s=(int) Mat ...

  2. 关于VUE 配置文件config详解内容

    // const path = require('path'); module.exports = { /** 区分打包环境与开发环境 * process.env.NODE_ENV==='produc ...

  3. Jconsole与Jmx 分析JVM状况(上) 转

    出处:Jconsole与Jmx 分析JVM状况(上) JVM 平台提供 Mbeans 说明 在 Java 2 平台 5.0 以上版本,有一组 API 可以让 Java 应用程序和允许的工具监视和管理  ...

  4. 无法发布-旧项目发布时出现:该项目中不存在目标“GatherAllFilesToPublish”。

    在项目文件夹下面找到 xxxx.csproj 文件,使用 VisualStudio Code 打开(或者任意编辑器,VisualStudio 可能无法编辑) 将以下节点进行更改 <Import ...

  5. linux复习5

    权限----------------- r //100 = 4 //文件 :读取内容, //文件夹:是查看文件夹的内容 w //文件 :写数据到文件 //文件夹:增删文件. //10 = 2 x // ...

  6. css3实现div自动左右动

    <!DOCTYPE html> <meta charset="UTF-8"/> <html> <head> <style> ...

  7. vue iview面包屑

    简单看一下vue,iview的面包屑怎么写呢? 简单的思路:1.获取到路由记录$route.matched 2.渲染 效果: 一.$route.matched 官网地址:https://router. ...

  8. textarea 限制输入字数

    一般情况下很多人限制textarea的输入字数会使用 onkeyup 或 onchange事件,但是这两种事件都带有明显的不足. onkeyup 事件只能监听键盘事件,而对于用户的粘贴毫无办法:而on ...

  9. SDRAM介绍

    一.             介绍 存储器的最初结构为线性,它在任何时刻,地址线中都只能有一位有效.设容量为N×M的存储器有S0-Sn-1条地址线:当容量增大时,地址选择线的条数也要线性增多,利用地址 ...

  10. 【hdu 6089】Rikka with Terrorist

    题意 有一个 \(n\times m\) 的二维网格,其中有 \(k\) 个禁止点. 有 \(q\) 组询问,每组询问为给一个点,求有多少个矩形以这个点为一角且不包含禁止点. \(n,m,k,q\le ...