解题思路

首先考虑最暴力的做法。对于每一步,我们都可以枚举每一条边,然后更新每两点之间经过\(k\)条边的最短路径。但是这样复杂度无法接受,我们考虑优化。

由于点数较少(其实最多只有\(200\)个点),\(N\)较大,考虑优化\(N\)。我们发现,其实可以直接从经过\(i\)条边的最短路和经过\(j\)条边的最短路推出经过\(i+j\)条边的最短路。这样的话,我们可以把每两点间的最短路保存下来,然后用类似于矩阵快速幂的做法就可以了。

最后为了不超时,我们需要将点的编号离散。最后时间复杂度是\(O(T^3logN)\)。

参考程序

#include <cstdio>
#include <cstring>
#include <map>
#define LL long long
using namespace std; const LL INF = 2147483647;
const LL MaxT = 110, MaxPoint = 210;
LL N, T, S, E;
LL Length[ MaxT ], I1[ MaxT ], I2[ MaxT ];
LL Num; namespace myHash {
LL Reflection[ 1010 ];
map< LL, LL > Map; void Hash() {
memset( Reflection, 0, sizeof( Reflection ) );
Map.clear();
for( LL i = 1; i <= T; ++i ) {
if( Map.find( I1[ i ] ) == Map.end() ) Map[ I1[ i ] ] = 1;
if( Map.find( I2[ i ] ) == Map.end() ) Map[ I2[ i ] ] = 1;
}
LL Last = 0;
for( map< LL, LL >::iterator it = Map.begin(); it != Map.end(); ++it )
Reflection[ ( *it ).first ] = ++Last;
Num = Last;
for( LL i = 1; i <= T; ++i ) {
I1[ i ] = Reflection[ I1[ i ] ];
I2[ i ] = Reflection[ I2[ i ] ];
}
return;
}
}//myHash struct Matrix {
LL A[ MaxPoint ][ MaxPoint ];
void Clear() {
for( LL i = 1; i <= 200; ++i )
for( LL j = 1; j <= 200; ++j )
A[ i ][ j ] = INF;
return;
}
Matrix operator * ( const Matrix Other ) const {
Matrix Ans;
Ans.Clear();
for( LL i = 1; i <= Num; ++i )
for( LL j = 1; j <= Num; ++j )
for( LL k = 1; k <= Num; ++k )
Ans.A[ i ][ j ] = min( Ans.A[ i ][ j ], A[ i ][ k ] + Other.A[ k ][ j ] );
return Ans;
}
}; Matrix Basic, Ans; void Init() {
Basic.Clear();
Ans.Clear();
for( int i = 1; i <= 200; ++i ) Ans.A[ i ][ i ] = 0;
for( int i = 1; i <= T; ++i ) {
Basic.A[ I1[ i ] ][ I2[ i ] ] = min( Basic.A[ I1[ i ] ][ I2[ i ] ], Length[ i ] );
Basic.A[ I2[ i ] ][ I1[ i ] ] = min( Basic.A[ I2[ i ] ][ I1[ i ] ], Length[ i ] );
}
return;
} int main() {
scanf( "%lld%lld%lld%lld", &N, &T, &S, &E );
for( LL i = 1; i <= T; ++i )
scanf( "%lld%lld%lld", &Length[ i ], &I1[ i ], &I2[ i ] );
myHash::Hash();
Init();
for( ; N; N >>= 1, Basic = Basic * Basic )
if( N & 1 ) Ans = Basic * Ans;
printf( "%lld\n", Ans.A[ myHash::Reflection[ S ] ][ myHash::Reflection[ E ] ] );
return 0;
}

POJ 3613 [ Cow Relays ] DP,矩阵乘法的更多相关文章

  1. poj 3613 Cow Relays【矩阵快速幂+Floyd】

    !:自环也算一条路径 矩阵快速幂,把矩阵乘法的部分替换成Floyd(只用一个点扩张),这样每"乘"一次,就是经过增加一条边的最短路,用矩阵快速幂优化,然后因为边数是100级别的,所 ...

  2. poj 3613 Cow Relays(矩阵的图论意义)

    题解 用一个矩阵来表示一个图的边的存在性,即矩阵C[i,j]=1表示有一条从i到j的有向边C[i,j]=0表示没有从i到j的边.这个矩阵的k次方后C[i,j]就表示有多少条从i到j恰好经过k条边的路径 ...

  3. Poj 3613 Cow Relays (图论)

    Poj 3613 Cow Relays (图论) 题目大意 给出一个无向图,T条边,给出N,S,E,求S到E经过N条边的最短路径长度 理论上讲就是给了有n条边限制的最短路 solution 最一开始想 ...

  4. 【floyd+矩阵乘法】POJ 3613 Cow Relays

    Description For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a rel ...

  5. poj 3613 Cow Relays

    Cow Relays Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5411   Accepted: 2153 Descri ...

  6. POJ 3613 Cow Relays(floyd+快速幂)

    http://poj.org/problem?id=3613 题意: 求经过k条路径的最短路径. 思路: 如果看过<矩阵乘法在信息学的应用>这篇论文就会知道 现在我们在邻接矩阵中保存距离, ...

  7. POJ 3613 Cow Relays (floyd + 矩阵高速幂)

    题目大意: 求刚好经过K条路的最短路 我们知道假设一个矩阵A[i][j] 表示表示 i-j 是否可达 那么 A*A=B  B[i][j]  就表示   i-j 刚好走过两条路的方法数 那么同理 我们把 ...

  8. POJ 3613 Cow Relays 恰好n步的最短路径

    http://poj.org/problem?id=3613 题目大意: 有T条路.从s到e走n步,求最短路径. 思路: 看了别人的... 先看一下Floyd的核心思想: edge[i][j]=min ...

  9. POJ 3613 Cow Relays【k边最短路】

    题目链接:http://poj.org/problem?id=3613 题目大意: 给出n头牛,t条有向边,起点以及终点,限制每头牛放在一个点上,(一个点上可以放多头牛),从起点开始进行接力跑到终点, ...

随机推荐

  1. 版本控制器之SVN(一)

    通常软件开发由多人协作开发,如果对代码文件.配置文件.文档等没有进行版本控制,将会出现很多问题: 备份多个版本,占用磁盘空间大 解决代码冲突困难 容易引发BUG 难于追溯问题代码的修改人和修改时间 难 ...

  2. Ruby初见

    一. 简介 Ruby,一种简单快捷的面向对象(面向对象程序设计)脚本语言,在20世纪90年代由日本人松本行弘(Yukihiro Matsumoto)开发,遵守GPL协议和Ruby License. 二 ...

  3. 2019最新的IDEA的激活方式!!!

    第一步: 安装IDEAhttps://www.jetbrains.com/idea/ 选择要下载的版本Ultimate 第二步: 下载破解补丁链接:https://pan.baidu.com/s/1j ...

  4. @Resource与@Autowired注解的区别踩坑者入

    一.写本博文的原因 有些童鞋搞不为什么要用@Resource或者@Autowired,咱们一起研究下 @Resource默认按照名称方式进行bean匹配,@Autowired默认按照类型方式进行bea ...

  5. PHP扩展开发01:第一个扩展

    我们先假设业务场景,是需要有这么一个扩展,提供一个叫ccvita_string的函数,他的主要作用是返回一段字符.(这个业务场景实在太假,大家就这么看看吧)对应的PHP代码可能是这样: functio ...

  6. 使用fiddler进程弱网测试

    使用fiddler手机需调整所连网络代理模式为手动,主机名与端口改为与电脑相同 打开Fiddler,Rules(规则)->Performance(性能)->勾选 Simulate Mode ...

  7. 在不同电脑设备之间, 同步 VSCode 的插件和配置

    前提有一个码云或者github的账户,以下是我用github的示例(只有第二步不一样): Step1. 安装 同步插件"Settings Sync" Step2. 进入github ...

  8. linux之信息查看

    在使用Linux操作系统的时候,有时候会需要了解当前使用的系统版本信息,特别是在给别人进行服务器部署运维的时候,准确的系统版本信息至关重要 查看linux内核版本信息: cat  /proc/vers ...

  9. AngularJS 在实际应用中优缺点

    AngularJS 在实际应用中优点:模板功能强大丰富,并且是声明式的,自带了丰富的Angular指令:是一个比较完善的前端MV*框架,包含模板,数据双向绑定,路由,模块化,服务,过滤器,依赖注入等所 ...

  10. 禁止antd Input.Password浏览器自动回传

    设置autoComplete为new-password