题意:给你n个点,每个点可能有指向其他点的单向边,代表这个点可以把软件传给他指向的点,然后解决两个问题,

1、问你最少需要给几个点,才能使所有点都能拿到软件;

2、问你还需要增加几条单向边,才能使任意两点可达;

解题思路:

如果一个点没有被其他点指向,也就是入度为0,那么这个点在一开始肯定要给,因为有环的话,环内的点一定可达,所以先缩点,问题1的答案就是入度为0的强连通分量的个数;

问题2的答案就是所有强连通分量的max(入度为0,出度为0);

#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
#include<cstring>
#include<stack>
#include<cstdio>
#define maxn 100005
using namespace std;
struct Edge
{
int next;
int to;
}edge[maxn];
struct node
{
int x;
int y;
}a[maxn];
int sccno[maxn];
int visit[maxn];
int head[maxn];
int low[maxn];
int dfn[maxn];
int indeg[maxn];
int outdeg[maxn];
int instack[maxn];
int cnt;
int step;
int index;
int scc_cnt;
int cot;
vector<int>scc[maxn];
void add(int u,int v)
{
edge[cnt].to=v;
edge[cnt].next=head[u];
head[u]=cnt++;
}
void tarjan(int x)
{
low[x]=dfn[x]=++step;
instack[++index]=x;
visit[x]=1;
for(int i=head[x];i!=-1;i=edge[i].next)
{
if(!dfn[edge[i].to])
{
tarjan(edge[i].to);
low[x]=min(low[x],low[edge[i].to]);
}
else if(visit[edge[i].to])
{
low[x]=min(low[x],dfn[edge[i].to]);
}
}
if(low[x]==dfn[x])
{
scc_cnt++;
scc[scc_cnt].clear();
do
{
scc[scc_cnt].push_back(instack[index]);
sccno[instack[index]]=scc_cnt;
visit[instack[index]]=0;
index--;
}while(x!=instack[index+1]);
}
}
void init()
{
scc_cnt=step=cnt=index=cot=0;
memset(head,-1,sizeof(head));
memset(visit,0,sizeof(visit));
memset(low,0,sizeof(low));
memset(dfn,0,sizeof(dfn));
memset(indeg,0,sizeof(indeg));
memset(outdeg,0,sizeof(outdeg));
}
int main()
{
int n;
int x;
init();
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
while(scanf("%d",&x))
{
if(x==0)
break;
a[++cot].x=i;
a[cot].y=x;
add(i,x);
}
}
for(int i=1;i<=n;i++)
if(!dfn[i])
tarjan(i);
for(int i=1;i<=cot;i++)
{
if(sccno[a[i].x]!=sccno[a[i].y])
{
indeg[sccno[a[i].y]]++;
outdeg[sccno[a[i].x]]++;
}
}
int ans1=0;
int ans2=0;
int in;
for(int i=1;i<=scc_cnt;i++)
if(indeg[i]==0)
ans1++;
printf("%d\n",ans1);
if(scc_cnt==1)
{
printf("0\n");
}
else
{
for(int i=1;i<=scc_cnt;i++)
{
if(outdeg[i]==0)
ans2++;
}
in=max(ans1,ans2);
printf("%d\n",in);
}
return 0;
}

  

poj-1236(强连通分量)的更多相关文章

  1. poj 1236(强连通分量分解模板题)

    传送门 题意: N(2<N<100)个学校之间有单向的网络,每个学校得到一套软件后,可以通过单向网络向周边的学校传输. 问题1:初始至少需要向多少个学校发放软件,使得网络内所有的学校最终都 ...

  2. poj 2186 强连通分量

    poj 2186 强连通分量 传送门 Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 33414 Acc ...

  3. poj 1904(强连通分量+输入输出外挂)

    题目链接:http://poj.org/problem?id=1904 题意:有n个王子,每个王子都有k个喜欢的妹子,每个王子只能和喜欢的妹子结婚,大臣给出一个匹配表,每个王子都和一个妹子结婚,但是国 ...

  4. poj 2762(强连通分量+拓扑排序)

    题目链接:http://poj.org/problem?id=2762 题意:给出一个有向图,判断任意的两个顶点(u,v)能否从u到达v,或v到达u,即单连通,输出Yes或No. 分析:对于同一个强连 ...

  5. poj 1904 强连通分量

    思路:先有每个儿子向所有他喜欢的姑娘建边,对于最后给出的正确匹配,我们建由姑娘到相应王子的边.和某个王子在同一强连通分量,且王子喜欢的姑娘都是该王子能娶得.思想类似匈牙利算法求匹配的时候,总能找到增广 ...

  6. poj 1904(强连通分量+完美匹配)

    传送门:Problem 1904 https://www.cnblogs.com/violet-acmer/p/9739990.html 参考资料: [1]:http://www.cnblogs.co ...

  7. POJ(2186)强连通分量分解

    #include<cstdio> #include<vector> #include<cstring> using namespace std; ; vector& ...

  8. Network of Schools POJ - 1236(强连通+缩点)

    题目大意 有N个学校,这些学校之间用一些单向边连接,若学校A连接到学校B(B不一定连接到A),那么给学校A发一套软件,则学校B也可以获得.现给出学校之间的连接关系,求出至少给几个学校分发软件,才能使得 ...

  9. Popular Cows POJ - 2186(强连通分量)

    Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10, ...

  10. 有向图 加最少的边 成为强连通分量的证明 poj 1236 hdu 2767

    poj 1236: 题目大意:给出一个有向图, 任务一: 求最少的点,使得从这些点出发可以遍历整张图  任务二: 求最少加多少边 使整个图变成一个强连通分量. 首先任务一很好做, 只要缩点 之后 求 ...

随机推荐

  1. 02-vue学习篇-以正确的姿势使用vue

    1.渲染数据 #view层 <div class="hello"> <h1>{{ msg }}</h1> //msg </div> ...

  2. Spring MVC 5 + Thymeleaf 基于Java配置和注解配置

    Spring MVC 5 + Thymeleaf 注解配置 Spring的配置方式一般为两种:XML配置和注解配置 Spring从3.0开始以后,推荐使用注解配置,这两种配置的优缺点说的人很多,我就不 ...

  3. 分布式系统消息中间件——RabbitMQ的使用进阶篇

    分布式系统消息中间件--RabbitMQ的使用进阶篇 前言     上一篇文章 (https://www.cnblogs.com/hunternet/p/9668851.html) 简单总结了分布式系 ...

  4. 【React】开发一个城市选择控件

    想到做这个,是因为无意中在github上看到了这一个仓库https://github.com/lunlunshiwo/ChooseCity,做的就是一个城市选择控件,是用vue写的,说的是阿里的一道题 ...

  5. [WPF]如何使用代码创建DataTemplate(或者ControlTemplate)

    1. 前言 上一篇文章([UWP]如何使用代码创建DataTemplate(或者ControlTemplate))介绍了在UWP上的情况,这篇文章再稍微介绍在WPF上如何实现. 2. 使用Framew ...

  6. rest_framework之视图及源码剖析

    最初形态(工作中可能会使用) 引子 Django的CBV我们应该都有所了解及使用,大体概括一下就是通过定义类并在类中定义get post put delete等对应于请求方法的方法,当请求来的时候会自 ...

  7. JEECG 单点登录 SSO

    jeecg中用户登录的唯一性-CSDN问答https://ask.csdn.net/questions/656639 JEECG 集成KiSSO单点登录实现统一身份认证 - zhangdaiscott ...

  8. 开发神器之phpstorm破解与日常使用

    PhpStorm 是 JetBrains 公司开发的一款商业的 PHP 集成开发工具,旨在提高用户效率,可深刻理解用户的编码,提供智能代码补全,快速导航以及即时错误检查. PhpStorm可随时帮助用 ...

  9. 五、es6 Set

    一.特点 1.是一个构造函数 2.类数组,元素唯一.没有重复 二.new Set(); 二.构造函数接受数组将数组转换成Set数据结构,[...new Set(1,3)],转化成对象: console ...

  10. Select2 4.0.5 API

    详细属性参考官方API,https://github.com/select2/select2/releases/tag/4.0.5 注:4.0.5版本API与3.x版本有差异,有些属性已废弃,以下列出 ...