我不是题目的说

这道题运用了一种很巧妙的DP方式:悬线法

如图,蓝色为悬线,黄色为向两边延伸的长度

那么显然,最大子矩形的宽一定是这些黄线中最小的(证明从略)

所以我们可以维护三个数组:

Up[i][j]表示向上延伸的长度

Left[i][j]表示向左能延伸到的最远横坐标

Right[i][j]表示向右能延伸到的最远横坐标

Code:

 #include<bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
int n,m,maxRec,maxSqr;
int mp[][];
int Up[][];
int Left[][];
int Right[][];
inline void Init(){
cin>>n>>m;
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
cin>>mp[i][j];
//预处理一:没啥可说的
Left[i][j]=Right[i][j]=j;
Up[i][j]=;
}
}
//预处理二:处理边界
for(int i=;i<=n+;i++)mp[i][]=mp[i][m+]=INF;
for(int j=;j<=m+;j++)mp[][j]=mp[n+][]=INF;
//预处理三:预处理Left、Right数组(黄线)
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
if(mp[i][j]!=mp[i][j-]){
Left[i][j]=Left[i][j-];
}
}
}
for(int i=;i<=n;i++){
for(int j=m-;j>=;j--){
if(mp[i][j]!=mp[i][j+]){
Right[i][j]=Right[i][j+];
}
}
}
}
inline void DP(){
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
//更新
if(i>&&mp[i][j]!=mp[i-][j]){
Up[i][j]=Up[i-][j]+;
//注意这里存的是坐标所以Left取max而Right取min
Left[i][j]=max(Left[i][j],Left[i-][j]);
Right[i][j]=min(Right[i][j],Right[i-][j]);
}
//统计矩形,正方形同理
int dis=Right[i][j]-Left[i][j]+;
maxRec=max(maxRec,Up[i][j]*dis);
maxSqr=max(maxSqr,min(Up[i][j],dis)*min(Up[i][j],dis));
}
}
cout<<maxSqr<<endl<<maxRec<<endl;
}
int main(){
Init();
DP();
return ;
}

[洛谷P1169][题解][ZJOI2007]棋盘制作的更多相关文章

  1. 洛谷 P1169||bzoj1057 [ZJOI2007]棋盘制作

    洛谷P1169 bzoj1057 这个题目跟最大全0子矩阵是类似的.正方形的话,只要把任意极大子正方形(”极大“定义见后面的”论文“)当成把某个极大子矩形去掉一块变成正方形即可,容易解决. 解法1:看 ...

  2. 【洛谷P1169】[ZJOI2007]棋盘制作

    棋盘制作 题目链接 这个题是[USACO5.3]巨大的牛棚Big Barn和玉蟾宫的结合 一道顶两道毒瘤! 题解: 首先,棋盘有两种选法: 1.任意白格(x,y) (x+y)%2=0 ,任意黑格(x, ...

  3. [洛谷P1169][题解][ZJOI2007]午餐

    这是题目吗? 显然的DP,讲几个重要的地方 1.贪心:让吃饭时间长的先排队(证明从略) 2.状态: f[i][j][k]代表前i个人,一号时间j,二号时间k显然MLE 所以压缩成f[i][j]代表前i ...

  4. DP(悬线法)【P1169】 [ZJOI2007]棋盘制作

    顾z 你没有发现两个字里的blog都不一样嘛 qwq 题目描述-->p1169 棋盘制作 题目大意 给定一个01棋盘,求其中01交错的最大正方形与矩形. 解题思路: 动态规划---悬线法 以下内 ...

  5. 【题解】洛谷P1169 [ZJOI2007] 棋盘制作(坐标DP+悬线法)

    次元传送门:洛谷P1169 思路 浙江省选果然不一般 用到一个从来没有听过的算法 悬线法: 所谓悬线法 就是用一条线(长度任意)在矩阵中判断这条线能到达的最左边和最右边及这条线的长度 即可得到这个矩阵 ...

  6. 洛谷 P1169 [ZJOI2007]棋盘制作

    2016-05-31 14:56:17 题目链接: 洛谷 P1169 [ZJOI2007]棋盘制作 题目大意: 给定一块矩形,求出满足棋盘式黑白间隔的最大矩形大小和最大正方形大小 解法: 神犇王知昆的 ...

  7. 洛谷P1169 [ZJOI2007]棋盘制作 悬线法 动态规划

    P1169 [ZJOI2007]棋盘制作 (逼着自己做DP 题意: 给定一个包含0,1的矩阵,求出一个面积最大的正方形矩阵和长方形矩阵,要求矩阵中相邻两个的值不同. 思路: 悬线法. 用途: 解决给定 ...

  8. 洛谷 P1169 [ZJOI2007]棋盘制作 (悬线法)

    和玉蟾宫很像,条件改成不相等就行了. 悬线法题目 洛谷 P1169  p4147  p2701  p1387 #include<cstdio> #include<algorithm& ...

  9. 悬线法 || BZOJ 1057: [ZJOI2007]棋盘制作 || Luogu P1169 [ZJOI2007]棋盘制作

    题面:P1169 [ZJOI2007]棋盘制作 题解: 基本是悬线法板子,只是建图判断时有一点点不同. 代码: #include<cstdio> #include<cstring&g ...

随机推荐

  1. 20.DjangoRestFramework学习三之认证组件、权限组件、频率组件、url注册器、响应器、分页组件

    一 认证组件 1. 局部认证组件 我们知道,我们不管路由怎么写的,对应的视图类怎么写的,都会走到dispatch方法,进行分发, 在咱们看的APIView类中的dispatch方法的源码中,有个sel ...

  2. idea 上传svn忽略文件

    在idea最下面找到Version Control 默认我们svn提交的文件都在Default ChangeList中 我们创建一个新的ChangeList

  3. Bootstrap响应式栅格系统设计

    为了方便起见,我们通过1200px宽的屏幕来讲解bootstrap中container.row.col的css属性值为何这样设置的原理 在1200px屏幕中为何container的宽度设置为1170p ...

  4. 【Git】405- 分享:大牛总结的 Git 使用技巧

    作者:你喜欢吃青椒么 来源:juejin.im/post/5d157bf3f265da1bcc1954e6 前言 本文是参考廖雪峰老师的Git资料再加上我自己对Git的理解,记录我的Git学习历程,作 ...

  5. 解决Vue报错:TypeError: Cannot read property 'scrollHeight' of undefined

    如图: 解决问题的根源: 这个DOM元素找不到,或者是初始化的时候没有初始化成功,总之就是这个DOM元素并没有创建成功就进行了操作.保证这个DOM元素创建成功了就不会存在这个问题了.判断当前DOM元素 ...

  6. 人生苦短,我用Python(1)

    1.Python保留字与标识符 保留字是Python语言中一些已经被赋予特定意义的单词,开发程序时,不可以把这些保留字作为变量.函数.类.模块和其他对象的名称来使用. and as assert br ...

  7. JS 判断移动端 ,跳转

    function SetPlatForm() { var JumpUrl = ""; var sUserAgent = navigator.userAgent.toLowerCas ...

  8. VS2019 开发Django(七)------VS2019不能格式化html代码

    如题,在VS2019中不能使用快捷键Ctrl+K,+D格式化html代码,印象中之前的版本是可以的吧!不太确定,这给我带来了很大的麻烦,在编写Django项目的时候,标准的模板是新建的html文件,不 ...

  9. python内置模块-datetime

    摘录 廖雪峰网站 datetime是python内置的处理日期和时间的标准库 获取当前日期和时间 >>> from datetime import datetime >> ...

  10. vue 中 px转vw的用法

    下面介绍最简单的用法 1 下载依赖 npm install postcss-import postcss-loader postcss-px-to-viewport --save-dev 2 在项目根 ...