Python网络爬虫 - 爬取中证网银行相关信息
最终版:07_中证网(Plus -Pro).py
# coding=utf-8
import requests
from bs4 import BeautifulSoup
import io
import sys
import os
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='gb18030')  # 改变标准输出的默认编码
for qq in range(8):
    # query = input("【中证网】请输入你想搜索的内容:")
    query = '苏州银行'
    #年份
    year = [2014,2015,2016,2017,2018,2019,2020,2021]
    #总页数
    pages = [2,1,1,1,11,1,19,7]
    year = year[qq]
    pages = pages[qq]
    if not os.path.isdir(f'D:/桌面/爬虫-银行/中国证券网/{query}'):  # 如果没有此文件夹
        os.mkdir(f'D:/桌面/爬虫-银行/中国证券网/{query}')  # 创建此文件夹
    m = 0
    for p in range(1, pages + 1):
        url = f'http://search.cs.com.cn/search?page={p}&channelid=215308&searchword={query}&keyword={query}&token=12.1462412070719.47&perpage=10&outlinepage=5&&andsen=&total=&orsen=&exclude=&searchscope=×cope=×copecolumn=&orderby=&timeline=={year}'
        dic = {
            "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36"}
        resp = requests.get(url, headers=dic, )
        resp.encoding = 'utf-8'
        # print(resp)
        print(f'\n>>>--------------------第{p}页---------------------<<<\n')
        print(f'\n>>>--------------------第{p}页---------------------<<<\n')
        print(f'\n>>>--------------------第{p}页---------------------<<<\n')
        # print(resp.text)
        page = BeautifulSoup(resp.text, "html.parser")  # 指定html解析器
        alist = page.find_all("table")
        datalist = []
        for ii in alist:
            ss=ii.find('td', style='font-size: 12px;line-height: 24px;color: #333333;margin-top: 4px;')
            # print('ss=\n\n',ss)
            if ss != None:
                ss = ss.get_text()
                datalist.append(ss)
        # print('data:',datalist,len(datalist))
        if not os.path.isdir(f'D:/桌面/爬虫-银行/中国证券网/{query}/{year}'):  # 如果没有此文件夹
            os.mkdir(f'D:/桌面/爬虫-银行/中国证券网/{query}/{year}')  # 创建此文件夹
        for ii in range(len(datalist)):
            fp = open(f'D:/桌面/爬虫-银行/中国证券网/{query}/{year}/({year}){ii + m + 1}.txt', 'w+', encoding='utf-8')
            fp.write(datalist[ii] + '\n')  # 只包含文本
            print(datalist[ii])
            print(f'\n> > >{year}年,第{p}页,第{ii + 1}篇,成功! < < <')
            fp.close()
        m = m + len(datalist) + 1
print('----------------------------')
print(f'------\n{year}年,爬取完毕----')
print('----------------------------')历史优化记录:01_中证网.py
# coding=utf-8
import requests
from bs4 import BeautifulSoup
import io
import sys
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='gb18030')  # 改变标准输出的默认编码
query = input("【中证网】请输入你想搜索的内容:")
pages = int(input("要爬取的页数(不小于1):"))
if pages < 1:
    exit()
url = f'http://search.cs.com.cn/search?channelid=215308&perpage=&templet=&token=12.1462412070719.47&searchword={query}'
dic = {
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 "
                  "Safari/537.36 SLBrowser/7.0.0.6241 SLBChan/30"}
resp = requests.get(url, headers=dic, )
resp.encoding = 'utf-8'
# print(resp)
# print(resp.text)
page = BeautifulSoup(resp.text, "html.parser")  # 指定html解析器
alist = page.find("table").find_all("a")
# print(alist)
weblist = []
for a in alist:
    if a.get('href')[:5] == "https":
        weblist.append(a.get('href'))
# ----------------单页每个文章---------------------------------
m = 0
for ii in range(len(weblist)):
    url_a = weblist[ii]
    # print('0=',url_a)
    dic_a = {
        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 "
                      "Safari/537.36 SLBrowser/7.0.0.6241 SLBChan/30"}
    resp_a = requests.get(url_a, headers=dic_a, )
    resp_a.encoding = 'gbk'
    # print('New:\n',resp_a.text)
    page_a = BeautifulSoup(resp_a.text, "html.parser")  # 指定html解析器
    # print('123:\n',page_a)
    page_b = page_a.find('section').find_all('p')
    # print(page_b)
    fp=open(f'D:/桌面/爬虫-银行/中国证券网/中国银行/{ii+1}.txt','w+',encoding='utf-8')
    txt_list = []
    for txt_a in page_b:
        # print(txt_a.text)
        txt_list.append(txt_a.text)
    # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    # ++++++++++++++++++++++文本写入+++++++++++++++++++++++++++++++
    for i in range(len(txt_list)):
        fp.write(txt_list[i] + '\n')  # 只包含文本
    fp.close()
    print(f'>>{ii+1}成功!')
    m = ii+1
# +-+++-----------++++++++++-----多页------++++++++++++----------++++
if pages > 1:
    for p in range(pages):
        url_s = f"http://search.cs.com.cn/search?page={p+1}&channelid=215308&searchword={query}"
        resp = requests.get(url, headers=dic, )
        resp.encoding = 'utf-8'
        # print(resp)
        # print(resp.text)
        page = BeautifulSoup(resp.text, "html.parser")  # 指定html解析器
        alist = page.find("table").find_all("a")
        # print(alist)
        weblist = []
        for a in alist:
            if a.get('href')[:5] == "https":
                weblist.append(a.get('href'))
        # ----------------单页每个文章---------------------------------
        for ii in range(len(weblist)):
            url_a = weblist[ii]
            # print('0=',url_a)
            dic_a = {
                "User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 "
                              "Safari/537.36 SLBrowser/7.0.0.6241 SLBChan/30"}
            resp_a = requests.get(url_a, headers=dic_a, )
            resp_a.encoding = 'gbk'
            # print('New:\n',resp_a.text)
            page_a = BeautifulSoup(resp_a.text, "html.parser")  # 指定html解析器
            # print('123:\n',page_a)
            page_b = page_a.find('section').find_all('p')
            # print(page_b)
            fp = open(f'D:/桌面/爬虫-银行/中国证券网/中国银行/{ii + 1 + m}.txt', 'w+', encoding='utf-8')
            txt_list = []
            for txt_a in page_b:
                # print(txt_a.text)
                txt_list.append(txt_a.text)
            # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++
            # ++++++++++++++++++++++文本写入+++++++++++++++++++++++++++++++
            for i in range(len(txt_list)):
                fp.write(txt_list[i] + '\n')  # 只包含文本
            print(f'>>{ii + 1 + m}成功!')
            m = m + ii + 1
fp.close()
print('---------------\n>>>爬取完毕<<<')历史优化记录:02_中证网.py
# coding=utf-8
import requests
from bs4 import BeautifulSoup
import io
import sys
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='gb18030')  # 改变标准输出的默认编码
query = input("【中证网】请输入你想搜索的内容:")
pages = int(input("要爬取的页数(不小于1):"))
if pages < 1:
    exit()
url = f'http://search.cs.com.cn/search?page=1&channelid=215308&searchword={query}'
dic = {
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 "
                  "Safari/537.36 SLBrowser/7.0.0.6241 SLBChan/30"}
resp = requests.get(url, headers=dic, )
resp.encoding = 'utf-8'
# print(resp)
# print(resp.text)
page = BeautifulSoup(resp.text, "html.parser")  # 指定html解析器
alist = page.find("table").find_all("a")
# print(alist)
weblist = []
for a in alist:
    if a.get('href')[:5] == "https":
        weblist.append(a.get('href'))
# ----------------单页每个文章---------------------------------
m = 0
for ii in range(len(weblist)):
    url_a = weblist[ii]
    # print('0=',url_a)
    dic_a = {
        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 "
                      "Safari/537.36 SLBrowser/7.0.0.6241 SLBChan/30"}
    resp_a = requests.get(url_a, headers=dic_a, )
    resp_a.encoding = 'gbk'
    # print('New:\n',resp_a.text)
    page_a = BeautifulSoup(resp_a.text, "html.parser")  # 指定html解析器
    # print('123:\n',page_a)
    page_b = page_a.find('section').find_all('p')
    # print(page_b)
    fp=open(f'D:/桌面/爬虫-银行/中国证券网/中国银行/0/(2021){ii+1}.txt','w+',encoding='utf-8')
    txt_list = []
    for txt_a in page_b:
        # print(txt_a.text)
        txt_list.append(txt_a.text)
    # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    # ++++++++++++++++++++++文本写入+++++++++++++++++++++++++++++++
    for i in range(len(txt_list)):
        fp.write(txt_list[i] + '\n')  # 只包含文本
    fp.close()
    print(f'>>{ii+1}成功!')
    m = ii+1
# +-+++-----------++++++++++-----多页------++++++++++++----------++++
# +-+++-----------++++++++++-----多页------++++++++++++----------++++
if pages > 1:
    for p in range(pages):
        url_s = f"http://search.cs.com.cn/search?page={p+1}&channelid=215308&searchword={query}"
        resp = requests.get(url, headers=dic, )
        resp.encoding = 'utf-8'
        # print(resp)
        # print(resp.text)
        page = BeautifulSoup(resp.text, "html.parser")  # 指定html解析器
        alist = page.find("table").find_all("a")
        # print(alist)
        weblist = []
        for a in alist:
            if a.get('href')[:5] == "https":
                weblist.append(a.get('href'))
        # ----------------单页每个文章---------------------------------
        for ii in range(len(weblist)):
            url_a = weblist[ii]
            # print('0=',url_a)
            dic_a = {
                "User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 "
                              "Safari/537.36 SLBrowser/7.0.0.6241 SLBChan/30"}
            resp_a = requests.get(url_a, headers=dic_a, )
            resp_a.encoding = 'gbk'
            # print('New:\n',resp_a.text)
            page_a = BeautifulSoup(resp_a.text, "html.parser")  # 指定html解析器
            # print('123:\n',page_a)
            page_b = page_a.find('section').find_all('p')
            # print(page_b)
            fp = open(f'D:/桌面/爬虫-银行/中国证券网/中国银行/0/(2021){ii + 1 + m}.txt', 'w+', encoding='utf-8')
            txt_list = []
            for txt_a in page_b:
                # print(txt_a.text)
                txt_list.append(txt_a.text)
            # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++
            # ++++++++++++++++++++++文本写入+++++++++++++++++++++++++++++++
            for i in range(len(txt_list)):
                fp.write(txt_list[i] + '\n')  # 只包含文本
            print(f'>>{ii + 1 + m}成功!')
        m = m + ii + 1
fp.close()
print('---------------\n>>>爬取完毕<<<')历史优化记录:03_中证网.py
# coding=utf-8
import requests
from bs4 import BeautifulSoup
import io
import sys
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='gb18030')  # 改变标准输出的默认编码
query = input("【中证网】请输入你想搜索的内容:")
pages = int(input("要爬取的页数(不小于1):"))
if pages < 1:
    exit()
m = 0
for p in range(1,pages+1):
    url = f'http://search.cs.com.cn/search?page={p}&channelid=215308&searchword={query}&perpage=10&outlinepage=5&&andsen=&total=&orsen=&exclude=&searchscope=×cope=×copecolumn=&orderby=&timeline==2021'
    dic = {
        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36"}
    resp = requests.get(url, headers=dic, )
    resp.encoding = 'utf-8'
    # print(resp)
    print(f'\n>>>--------------------第{p}页---------------------<<<\n')
    print(f'\n>>>--------------------第{p}页---------------------<<<\n')
    print(f'\n>>>--------------------第{p}页---------------------<<<\n')
    # print(resp.text)
    page = BeautifulSoup(resp.text, "html.parser")  # 指定html解析器
    alist = page.find("table").find_all('a')
    weblist = []
    for a in alist:
        if a.get('href')[:5] == "https":
            weblist.append(a.get('href'))
    # print('weblist==',weblist)
# ----------------单页每个文章---------------------------------
    for ii in range(len(weblist)):
        url_a = weblist[ii]
        # print('0=',url_a)
        dic_a = {
            "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36"}
        resp_a = requests.get(url_a, headers=dic_a, )
        resp_a.encoding = 'gbk'
        # print('New:\n',resp_a.text)
        page_a = BeautifulSoup(resp_a.text, "html.parser")  # 指定html解析器
        # print('123:\n',page_a)
        page_b = page_a.find('section').find_all('p')
        # print(page_b)
        fp=open(f'D:/桌面/爬虫-银行/中国证券网/中国银行/2021/(2021){ii+m+1}.txt','w+',encoding='utf-8')
        txt_list = []
        for txt_a in page_b:
            # print('txt_a===',txt_a.text)
            txt_list.append(txt_a.text)
        print(f'\n-++++++++++++++++++第{ii+1}篇文章++++++++++++++++-\n',txt_list,len(txt_list))
        # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        # ++++++++++++++++++++++文本写入+++++++++++++++++++++++++++++++
        for i in range(len(txt_list)):
            fp.write(txt_list[i] + '\n')  # 只包含文本
        # print('-----------------------------------')
        print(f'\n> > >{ii+1}成功! < < <')
        fp.close()
    m=m+len(weblist)+1
print('---------------\n>>>爬取完毕<<<')历史优化记录:04_中证网(网址筛选问题).py
# coding=utf-8
import requests
from bs4 import BeautifulSoup
import io
import sys
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='gb18030')  # 改变标准输出的默认编码
query = input("【中证网】请输入你想搜索的内容:")
pages = int(input("要爬取的页数(不小于1):"))
if pages < 1:
    exit()
m = 0
for p in range(1,pages+1):
    url = f'http://search.cs.com.cn/search?page={pages}&channelid=215308&searchword={query}&keyword={query}&token=12.1462412070719.47&perpage=10&outlinepage=5&&andsen=&total=&orsen=&exclude=&searchscope=×cope=×copecolumn=&orderby=&timeline==2020'
    dic = {
        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36"}
    resp = requests.get(url, headers=dic, )
    resp.encoding = 'utf-8'
    # print(resp)
    print(f'\n>>>--------------------第{p}页---------------------<<<\n')
    print(f'\n>>>--------------------第{p}页---------------------<<<\n')
    print(f'\n>>>--------------------第{p}页---------------------<<<\n')
    # print(resp.text)
    page = BeautifulSoup(resp.text, "html.parser")  # 指定html解析器
    alist = page.find("table").find_all('a')
    print('alist:',alist)
    weblist = []
    for a in alist:
        if a.get('href')[4:] == "http":
            weblist.append(a.get('href'))
    print('weblist==',weblist)
# ----------------单页每个文章---------------------------------
    for ii in range(len(weblist)):
        url_a = weblist[ii]
        # print('0=',url_a)
        dic_a = {
            "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36"}
        resp_a = requests.get(url_a, headers=dic_a, )
        resp_a.encoding = 'gbk'
        # print('New:\n',resp_a.text)
        page_a = BeautifulSoup(resp_a.text, "html.parser")  # 指定html解析器
        # print('123:\n',page_a)
        page_b = page_a.find('section').find_all('p')
        # print(page_b)
        fp=open(f'D:/桌面/爬虫-银行/中国证券网/中国银行/2020/(2020){ii+m+1}.txt','w+',encoding='utf-8')
        txt_list = []
        for txt_a in page_b:
            # print('txt_a===',txt_a.text)
            txt_list.append(txt_a.text)
        print(f'\n-++++++++++++++++++第{ii+1}篇文章++++++++++++++++-\n',txt_list,len(txt_list))
        # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        # ++++++++++++++++++++++文本写入+++++++++++++++++++++++++++++++
        for i in range(len(txt_list)):
            fp.write(txt_list[i] + '\n')  # 只包含文本
        # print('-----------------------------------')
        print(f'\n> > >{ii+1}成功! < < <')
        fp.close()
    m=m+len(weblist)+1
print('---------------\n>>>爬取完毕<<<')历史优化记录:05_中证网.py
# coding=utf-8
import requests
from bs4 import BeautifulSoup
import io
import sys
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='gb18030')  # 改变标准输出的默认编码
query = input("【中证网】请输入你想搜索的内容:")
year = int(input('要爬取的年份:'))
pages = int(input("要爬取的页数(不小于1):"))
if pages < 1:
    exit()
m = 0
for p in range(1, pages + 1):
    url = f'http://search.cs.com.cn/search?page={p}&channelid=215308&searchword={query}&keyword={query}&token=12.1462412070719.47&perpage=10&outlinepage=5&&andsen=&total=&orsen=&exclude=&searchscope=×cope=×copecolumn=&orderby=&timeline=={year}'
    dic = {
        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36"}
    resp = requests.get(url, headers=dic, )
    resp.encoding = 'utf-8'
    # print(resp)
    print(f'\n>>>--------------------第{p}页---------------------<<<\n')
    print(f'\n>>>--------------------第{p}页---------------------<<<\n')
    print(f'\n>>>--------------------第{p}页---------------------<<<\n')
    # print(resp.text)
    page = BeautifulSoup(resp.text, "html.parser")  # 指定html解析器
    alist = page.find("table").find('tr').find_all('a')
    # print('alist:', alist)
    weblist = []
    for a in alist:
        if a.get('href')[:4] == "http":
            weblist.append(a.get('href'))
    print('weblist==', weblist)
    # ----------------单页每个文章---------------------------------
    for ii in range(len(weblist)):
        url_a = weblist[ii]
        # print('0=',url_a)
        dic_a = {
            "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36"}
        resp_a = requests.get(url_a, headers=dic_a, )
        resp_a.encoding = 'gbk'
        # print('New:\n',resp_a.text)
        page_a = BeautifulSoup(resp_a.text, "html.parser")  # 指定html解析器
        # print('123:\n',page_a)
        page_b = page_a.find_all('p')
        # print(page_b)
        fp = open(f'D:/桌面/爬虫-银行/中国证券网/中国银行/{year}/({year}){ii + m + 1}.txt', 'w+', encoding='utf-8')
        txt_list = []
        for txt_a in page_b:
            # print('txt_a===',txt_a.text)
            txt_list.append(txt_a.text)
        print(f'\n-++++++++++++++++++第{ii + 1}篇文章++++++++++++++++-\n', txt_list, len(txt_list))
        # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        # ++++++++++++++++++++++文本写入+++++++++++++++++++++++++++++++
        for i in range(len(txt_list)):
            fp.write(txt_list[i] + '\n')  # 只包含文本
        # print('-----------------------------------')
        print(f'\n> > >{ii + 1}成功! < < <')
        fp.close()
    m = m + len(weblist) + 1
print('---------------\n>>>爬取完毕<<<')
历史优化记录:06_中证网(Plus).py
# coding=utf-8
import requests
from bs4 import BeautifulSoup
import io
import sys
import os
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='gb18030')  # 改变标准输出的默认编码
# query = input("【中证网】请输入你想搜索的内容:")
query = '交通银行'
year = int(input('要爬取的年份:'))
pages = int(input("要爬取的页数(不小于1):"))
if pages < 1:
    exit()
m = 0
for p in range(1, pages + 1):
    url = f'http://search.cs.com.cn/search?page={p}&channelid=215308&searchword={query}&keyword={query}&token=12.1462412070719.47&perpage=10&outlinepage=5&&andsen=&total=&orsen=&exclude=&searchscope=×cope=×copecolumn=&orderby=&timeline=={year}'
    dic = {
        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36"}
    resp = requests.get(url, headers=dic, )
    resp.encoding = 'utf-8'
    # print(resp)
    print(f'\n>>>--------------------第{p}页---------------------<<<\n')
    print(f'\n>>>--------------------第{p}页---------------------<<<\n')
    print(f'\n>>>--------------------第{p}页---------------------<<<\n')
    # print(resp.text)
    page = BeautifulSoup(resp.text, "html.parser")  # 指定html解析器
    alist = page.find_all("table")
    datalist = []
    for ii in alist:
        ss=ii.find('td', style='font-size: 12px;line-height: 24px;color: #333333;margin-top: 4px;')
        # print('ss=\n\n',ss)
        if ss != None:
            ss = ss.get_text()
            datalist.append(ss)
    # print('data:',datalist,len(datalist))
    if not os.path.isdir(f'D:/桌面/爬虫-银行/中国证券网/{query}/{year}'):  # 如果没有此文件夹
        os.mkdir(f'D:/桌面/爬虫-银行/中国证券网/{query}/{year}')  # 创建此文件夹
    for ii in range(len(datalist)):
        fp = open(f'D:/桌面/爬虫-银行/中国证券网/{query}/{year}/({year}){ii + m + 1}.txt', 'w+', encoding='utf-8')
        fp.write(datalist[ii] + '\n')  # 只包含文本
        print(datalist[ii])
        print(f'\n> > >第{p}页,第{ii + 1}篇,成功! < < <')
        fp.close()
    m = m + len(datalist) + 1
print('----------------------------')
print(f'------\n{year}年,爬取完毕----')
print('----------------------------')Python网络爬虫 - 爬取中证网银行相关信息的更多相关文章
- 如何利用Python网络爬虫爬取微信朋友圈动态--附代码(下)
		前天给大家分享了如何利用Python网络爬虫爬取微信朋友圈数据的上篇(理论篇),今天给大家分享一下代码实现(实战篇),接着上篇往下继续深入. 一.代码实现 1.修改Scrapy项目中的items.py ... 
- 利用Python网络爬虫爬取学校官网十条标题
		利用Python网络爬虫爬取学校官网十条标题 案例代码: # __author : "J" # date : 2018-03-06 # 导入需要用到的库文件 import urll ... 
- 如何用Python网络爬虫爬取网易云音乐歌曲
		今天小编带大家一起来利用Python爬取网易云音乐,分分钟将网站上的音乐down到本地. 跟着小编运行过代码的筒子们将网易云歌词抓取下来已经不再话下了,在抓取歌词的时候在函数中传入了歌手ID和歌曲名两 ... 
- 04 Python网络爬虫 <<爬取get/post请求的页面数据>>之requests模块
		一. urllib库 urllib是Python自带的一个用于爬虫的库,其主要作用就是可以通过代码模拟浏览器发送请求.其常被用到的子模块在Python3中的为urllib.request和urllib ... 
- Python网络爬虫-爬取微博热搜
		微博热搜的爬取较为简单,我只是用了lxml和requests两个库 url=https://s.weibo.com/top/summary?Refer=top_hot&topnav=1& ... 
- python网络爬虫&&爬取网易云音乐
		#爬取网易云音乐 url="https://music.163.com/discover/toplist" #歌单连接地址 url2 = 'http://music.163.com ... 
- 如何利用Python网络爬虫抓取微信朋友圈的动态(上)
		今天小编给大家分享一下如何利用Python网络爬虫抓取微信朋友圈的动态信息,实际上如果单独的去爬取朋友圈的话,难度会非常大,因为微信没有提供向网易云音乐这样的API接口,所以很容易找不到门.不过不要慌 ... 
- 如何利用Python网络爬虫抓取微信好友数量以及微信好友的男女比例
		前几天给大家分享了利用Python网络爬虫抓取微信朋友圈的动态(上)和利用Python网络爬虫爬取微信朋友圈动态——附代码(下),并且对抓取到的数据进行了Python词云和wordart可视化,感兴趣 ... 
- 利用Python网络爬虫抓取微信好友的所在省位和城市分布及其可视化
		前几天给大家分享了如何利用Python网络爬虫抓取微信好友数量以及微信好友的男女比例,感兴趣的小伙伴可以点击链接进行查看.今天小编给大家介绍如何利用Python网络爬虫抓取微信好友的省位和城市,并且将 ... 
随机推荐
- python链接mqtt订阅与发布
			什么是mqtt: MQTT 全称为 Message Queuing Telemetry Transport(消息队列遥测传输)是一种基于发布/订阅范式的"轻量级"消息协议.该协议构 ... 
- mongoDb入门并整合springboot
			镜像下载.域名解析.时间同步请点击 阿里巴巴开源镜像站 MongoDb简介 MongoDb是一种非关系型数据库,是现在非常火热的noSQL.也被称为文档性数据库.(可存放json,xml等格式) mo ... 
- RabbitMQ Go客户端教程1——HelloWorld
			本文翻译自RabbitMQ官网的Go语言客户端系列教程,本文首发于我的个人博客:liwenzhou.com,共分为六篇,本文是第一篇--HelloWorld. 这些教程涵盖了使用RabbitMQ创建消 ... 
- Nebula Graph 在网易游戏业务中的实践
			本文首发于 Nebula Graph Community 公众号 当游戏上知识图谱,网易游戏是如何应对大规模图数据的管理问题,Nebula Graph 又是如何帮助网易游戏落地游戏内复杂的图的业务呢? ... 
- 字节跳动社会招聘&内推-帮助你更快加入字节跳动
			字节跳动社会招聘&内推「[内推码]:4J8CA3W」 内推时间:一直有效 招聘对象:根据招聘要求而定 社招投递链接: https://job.toutiao.com/s/de5teaA 应届生 ... 
- MVC 生成安全验证码(例:用于登陆验证)    方法2
			MVC前台页面中,重新获取图片验证码的第二种方式:(前端页面代码如下,后台页面请参考上一篇文章) ---------html <td> <img id="imgValida ... 
- Kafka学习(一)
			作者:普适极客链接:https://www.zhihu.com/question/53331259/answer/1321992772来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载 ... 
- MybatisPlus 多租户的常见问题
			mybatis plus :https://mp.baomidou.com/guide/interceptor-tenant-line.html 如果最终执行的sql出现select查询没有租户ID, ... 
- spring-boot-learning-REST风格网站
			什么是REST风格: Representational State Transfer :表现层状态转换,实际上是一种风格.标准,约定 首先需要有资源才能表现, 所以第一个名词是" 资源&qu ... 
- 会话缓存(Session Cache)?
			最常用的一种使用 Redis 的情景是会话缓存(session cache).用 Redis 缓存会 话比其他存储(如 Memcached)的优势在于:Redis 提供持久化.当维护一个不 是严格要求 ... 
