link

题意

跳跳棋是在一条数轴上进行的。棋子只能摆在整点上。每个点不能摆超过一个棋子。棋盘上有3颗棋子,分别在 \(a,b,c\) 这三个位置。我们要通过最少的跳动把他们的位置移动成 \(x,y,z\) 。(棋子是没有区别的)

跳动的规则很简单,任意选一颗棋子,对一颗中轴棋子跳动。跳动后两颗棋子距离不变。一次只允许跳过1颗棋子。

判断是否可以完成任务。如果可以,输出最少需要的跳动次数。

思路

神仙题……非常巧妙地建模。只能说:女少口阿

首先,对于中轴棋子为 \(b\) (中间那个)的情况,显然一直往中间跳可以一直减小范围,直到不能跳为止。这时候就得到了一个非常有用的“Basic” 状态,也就是“根状态”(这怎么跟某道字符串手玩题这么像啊)

然后把 \(b\) 往左右跳的情况看成左右节点状态,那么所有状态构成了一棵二叉树。对于棋盘上所有的 \(a,b,c\) ,状态构成了一个森林。

那么,如果 \((a,b,c)\to (x,y,z)\) ,首要条件是在同一棵树上。这样第一问就解决了。

考虑状态怎么去树根。利用 LCA 的思想,把两个状态到根的距离调整到一样,然后二分向上的步数,最后找到一个 \(L\) 使得两个状态向上 \(L\) 步相遇,那么总答案就是 高度差加上二分答案的两倍。

代码

#include <bits/stdc++.h>
using namespace std;
const int inf=1e9+7;
int sx,sy,sz,dep,mx; void init( int &x,int &y,int &z )
{
x+=inf; y+=inf; z+=inf;
if ( y>z ) swap( y,z );
if ( x>y ) swap( x,y );
if ( y>z ) swap( y,z );
} void dfs( int x,int y,int z,int step )
{
int del1=y-x,del2=z-y;
if ( step==mx || del1==del2 ) { sx=x,sy=y,sz=z; dep=step; return; }
if ( del1>del2 )
{
swap( del1,del2 ); int del=del2/del1;
if ( del2%del1==0 ) del--;
if ( step+del<=mx ) dfs( x,y-del*del1,z-del*del1,step+del );
else dfs( x,y-(mx-step)*del1,z-(mx-step)*del1,mx );
}
else
{
int del=del2/del1; del-=(del2%del1==0);
if ( step+del<=mx ) dfs( x+del*del1,y+del*del1,z,step+del );
else dfs( x+(mx-step)*del1,y+(mx-step)*del1,z,mx );
}
} int main()
{
int x,y,z,a,b,c;
scanf( "%d%d%d",&a,&b,&c ); init( a,b,c );
scanf( "%d%d%d",&x,&y,&z ); init( x,y,z ); mx=inf;
dfs( a,b,c,0 ); int sa=sx,sb=sy,sc=sz,sd=dep;
dfs( x,y,z,0 );
if ( sx!=sa || sy!=sb || sz!=sc ) { printf( "NO" ); return 0; }
printf( "YES\n" );
//------------query1-------------------
int ans=0;
if ( sd>dep )
{
ans=sd-dep; mx=sd-dep;
dfs( a,b,c,0 ); a=sx; b=sy; c=sz;
}
if ( sd<dep )
{
ans=dep-sd; mx=dep-sd;
dfs( x,y,z,0 ); x=sx,y=sy,z=sz;
} int l=0,r=inf;
while ( l<=r )
{
mx=(l+r)>>1;
dfs( a,b,c,0 ); sa=sx,sb=sy,sc=sz;
dfs( x,y,z,0 );
if ( sa!=sx || sb!=sy || sc!=sz ) l=mx+1;
else r=mx-1;
} printf( "%d",(l<<1)+ans );
}

【题解】P1852 跳跳棋的更多相关文章

  1. P1852 跳跳棋 [LCA思想+二分答案]

    题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有\(3\)颗棋子,分别在\(a,b,c\)这三个位置.我们要通过最少的跳动 ...

  2. [luogu]P1852跳跳棋

    题目重点是每次不能跳过两个棋子 即对于每一个棋子的状态(a,b,c) (a<b<c) 最多有两种移动的方式 1.中间往两边跳 (a,b,c)-->(2b-a,a,c)或(a,c,2b ...

  3. P1852 [国家集训队]跳跳棋

    P1852 [国家集训队]跳跳棋 lca+二分 详细解析见题解 对于每组跳棋,我们可以用一个三元组(x,y,z)表示 我们发现,这个三元组的转移具有唯一性,收束性 也就是说,把每个三元组当成点,以转移 ...

  4. 洛谷 P1852 [国家集训队]跳跳棋 解题报告

    P1852 [国家集训队]跳跳棋 题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在\(a\),\(b\), ...

  5. 洛谷 P1852 [国家集训队] 跳跳棋

    题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.我们要通过最少的跳动把他们的位置移动 ...

  6. [BZOJ 2144]跳跳棋

    Description 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子.我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.我们要通过最少的跳动把他 ...

  7. 【洛谷】1852:[国家集训队]跳跳棋【LCA】【倍增?】

    P1852 [国家集训队]跳跳棋 题目背景 原<奇怪的字符串>请前往 P2543 题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个 ...

  8. 【bzoj2144】跳跳棋

    2144: 跳跳棋 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 492  Solved: 244[Submit][Status][Discuss] ...

  9. bzoj2144 跳跳棋 二分

    [bzoj2144]跳跳棋 Description 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子.我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位 ...

随机推荐

  1. linux域名解析引起登陆慢

    linux域名解析引起登陆慢的问题在于,ssh去登录这个台机器的时候,本机会去通过域名解析获取登录主机的主机名,所有一旦域名解析是无效的,需要等待较长时间 解决办法一: 将域名解析指到127.0.0. ...

  2. redmine系统部署

    1.下载railsinstaller.注意版本,我用的是老版的 railsinstaller-3.2.0.exe 下载地址 http://railsinstaller.org/en 国外的网站比较慢, ...

  3. ThreadLocal应用及源码分析

    ThreadLocal 基本使用 ThreadLocal 的作用是:提供线程内的局部变量,不同的线程之间不会相互干扰,这种变量在线程的生命周期内起作用,减少同一个线程内多个函数或组件之间一些公共变量传 ...

  4. Python_PyQt5_库

    QtQWidgets  小组件(暂无资料,但是Python中做窗口/网页时用的很多  *-*)  QtCore 模块包括了核心的非GUI功能,该模块用来对时间.文件.目录.各种数据类型.流.网址.媒体 ...

  5. 协程实现爬虫的例子主要优势在于充分利用IO时间去请求其他的url

    # 分别使用urlopen和requests两个模块进行演示 # import requests # 需要安装的 # from urllib.request import urlopen # # ur ...

  6. 本地VM安装虚拟机,使用xshell连接

    首先把VM设置成上面那样 在ubuntu里面安装ssh apt-get install openssh-server 启动服务 /etc/init.d/ssh startifconfig 查看ip x ...

  7. Python多线程join和setDaemon区别与用法

    一直没有太搞清楚join和setDaemon有什么区别,总是对于它们两个的概念很模糊,需要做个实验然后记录一下. 先说结论: join: 子线程合并到主线程上来的作用,就是当主线程中有子线程join的 ...

  8. python+selenium通过加载用户配置实现免登陆

    1查看profile路径 在Chrome地址栏访问chrome://version,可以查看个人资料存储位置: 2 python代码如下: from selenium import webdriver ...

  9. Leetcode 周赛#200 题解

    1535 找出数组游戏的赢家 #模拟+优化 题目链接 题意 给你一个由 不同 整数组成的整数数组 arr 和一个整数 k(\(1\leq k\leq1e9\)) .每回合游戏都在数组的arr[0] 和 ...

  10. go特性-数组与切片

    数组: 复制传递(不要按照c/c++的方式去理解,c/c++中数组是引用传递),定长 切片: 引用传递,底层实现是3个字段 array(数组) + len(长度) +cap(容量) type slic ...