吴裕雄 python 数据处理(1)
import time
print(time.time())
print(time.localtime())
print(time.strftime('%Y-%m-%d %X',time.localtime()))

绘图显示中文配置


import matplotlib.pyplot as plt
a = [1,1,2,3]
b = [2,2,2,2]
plt.plot(a,b)
plt.title("天生自然")
plt.show()

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv")
print(df.head())

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
print(df.head())

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
df.to_csv("E:\\temp\\taobao_price_data.csv", columns=["宝贝","价格"],index=False,header=True)
import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
print(df[0:3])

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
cols = df[["宝贝","价格"]]
print(cols.head())

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.ix[0:3,["宝贝","价格"]]
print(a)

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
df["销售量"] = df["价格"]*df["成交量"]
print(df.head())

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[(df["价格"]<100)&(df["成交量"]<10000)]
print(a)

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
print(df.head())
df1 = df.set_index("位置")
print(df1.head())
df2 = df1.sort_index()
print(df2.head())

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
df1 = df.set_index(["位置","卖家"])
print(df1.head())

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
df1 = df.set_index(["位置","卖家"]).sortlevel(0)
print(df1.head())

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.drop(["宝贝","卖家"],axis=1)
print(a.head())
b = df.drop(["宝贝","卖家"],axis=1).groupby("位置")
print(b.head())

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.drop(["宝贝","卖家"],axis=1).groupby("位置").mean()
print(a.head())

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.drop(["宝贝","卖家"],axis=1).groupby("位置").mean().sort_values("成交量",ascending=False)
print(a.head())

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.drop(["宝贝","卖家"],axis=1).groupby("位置").sum().sort_values("成交量",ascending=False)
print(a.head())

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
print(df.info())

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
print(df.describe())

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
print(df.describe(include=["object"]))

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df["成交量"].groupby(df["位置"])
print(a.head())

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df["成交量"].groupby(df["位置"]).mean()
print(a.head())

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df["成交量"].groupby([df["位置"],df["卖家"]]).mean()
print(a.head())

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.groupby("位置").mean()
print(a.head())

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.groupby(["位置","卖家"]).mean()
print(a.head())

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.groupby(["位置","卖家"]).size()
print(a.head())

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[30:35][["位置","卖家"]]
print(a)
b = df[90:95][["卖家","成交量"]]
print(b)

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[30:35][["位置","卖家"]]
b = df[30:35][["卖家","成交量"]]
c = pd.merge(a,b)
print(c)

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[30:35][["位置","卖家"]]
b = df[30:35][["卖家","成交量"]]
c = pd.merge(a,b,on="卖家")
print(c)

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[10:20][["位置","卖家"]]
b = df[30:40][["卖家","成交量"]]
c = pd.merge(a,b,how="outer")
print(c)

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[10:20][["位置","卖家"]]
b = df[30:40][["卖家","成交量"]]
c = pd.merge(a,b,how="left")
print(c)

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[10:20][["位置","卖家"]]
b = df[30:40][["卖家","成交量"]]
c = pd.merge(a,b,how="right")
print(c)

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:10][["位置","卖家"]]
print(a)
b = df[:10][["卖家","成交量"]]
print(b)
c = pd.merge(a,b,how="right")
print(c)

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:10][["位置","卖家"]]
b = df[:10][["卖家","成交量"]]
c = pd.merge(a,b,left_index=True,right_index=True)
print(c)

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:10][["位置","卖家"]]
b = df[:10][["价格","成交量"]]
c = pd.merge(a,b,left_index=True,right_index=True)
print(c)

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:10][["位置","卖家"]]
b = df[:10][["价格","成交量"]]
c = a.join(b)
print(c)

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:5]["宝贝"]
b = df[5:10]["宝贝"]
c = df[10:15]["宝贝"]
d = pd.concat([a,b,c])
print(d)

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:5]["宝贝"]
print(a)
b = df[:5]["价格"]
print(b)
c = df[:5]["成交量"]
print(c)
d = pd.concat([a,b,c],axis=1)
print(d)

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:5][["位置","卖家"]]
print(a)
b = df[:5][["价格","成交量"]]
print(b)
c = pd.concat([a,b])
print(c)

import pandas as pd
df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:5][["位置","卖家"]]
print(a)
b = df[:5][["价格","成交量"]]
print(b)
c = pd.concat([a,b],axis=1)
print(c)

吴裕雄 python 数据处理(1)的更多相关文章
- 吴裕雄 python 数据处理(3)
import time a = time.time()print(a)b = time.localtime()print(b)c = time.strftime("%Y-%m-%d %X&q ...
- 吴裕雄 python 数据处理(2)
import pandas as pd data = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\hz ...
- 吴裕雄 python 神经网络——TensorFlow 输入数据处理框架
import tensorflow as tf files = tf.train.match_filenames_once("E:\\MNIST_data\\output.tfrecords ...
- 吴裕雄 python神经网络 花朵图片识别(10)
import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...
- 吴裕雄 python神经网络 花朵图片识别(9)
import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...
- 吴裕雄 python 神经网络——TensorFlow pb文件保存方法
import tensorflow as tf from tensorflow.python.framework import graph_util v1 = tf.Variable(tf.const ...
- 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(4)
# -*- coding: utf-8 -*- import glob import os.path import numpy as np import tensorflow as tf from t ...
- 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(3)
import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...
- 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(2)
import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...
随机推荐
- JS 响应式布局
1.media 效果为屏幕宽度变化时,背景颜色也变化 <!DOCTYPE html> <html lang="en"> <head> <m ...
- python 典型文件结构
#/usr/bin/env/ python #(1) 起始行 "this is a test module" #(2) 模块文档(文档字符串) import sys import ...
- thinkphp3.2用户登录ajax提交验证
html代码 <if condition="!isset($_SESSION['account'])"> <div class="load lf&quo ...
- phpstorm xdebug
xdebug安装 https://xdebug.org/wizard.php http://blog.csdn.net/zhyh1986/article/details/45172685 http:/ ...
- Python网络爬虫-xpath模块
一.正解解析 单字符: . : 除换行以外所有字符 [] :[aoe] [a-w] 匹配集合中任意一个字符 \d :数字 [0-9] \D : 非数字 \w :数字.字母.下划线.中文 \W : 非\ ...
- 杂项:GitHub
ylbtech-杂项:GitHub gitHub是一个面向开源及私有软件项目的托管平台,因为只支持git 作为唯一的版本库格式进行托管,故名gitHub. gitHub于2008年4月10日正式上线, ...
- 关于clearfix和clear的研究
今天领导跟我说到这个问题,我上网找了些资料,已转载一篇文章到本博客(后一篇),摘自百度文库. ps:还有一种写法就是: CSS代码: .clearfix:after { content: " ...
- [UE4]运行时创建Actor
- php multicast多播实现详解
什么是多播? 网络中存在3中传播形式,单播,广播,多播. 1. 单播 : 就是1->1 2. 广播 : 1->多(广播域内) 3. 多播 : 1->组(一组ip) 1 2 3 4 5 ...
- LayUI——数据表格使用
Layui数据表格的实际项目使用 Layui的数据表格可谓是在后台管理的页面中经常用到的工具了 最近做项目就用到了,项目的要求是用数据表格显示出后台文章的列表并且每一行的文章都有对应的修改删除操作按钮 ...