Description

小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有n堆石子,小约翰和他的哥哥轮流取石子,每个人取

的时候,可以随意选择一堆石子,在这堆石子中取走任意多的石子,但不能一粒石子也不取,我们规定取到最后一

粒石子的人算输。小约翰相当固执,他坚持认为先取的人有很大的优势,所以他总是先取石子,而他的哥哥就聪明

多了,他从来没有在游戏中犯过错误。小约翰一怒之前请你来做他的参谋。自然,你应该先写一个程序,预测一下

谁将获得游戏的胜利。

Input

本题的输入由多组数据组成第一行包括一个整数T,表示输入总共有T组数据(T≤500)。每组数据的第一行包

括一个整数N(N≤50),表示共有N堆石子,接下来有N个不超过5000的整数,分别表示每堆石子的数目。

Output

每组数据的输出占一行,每行输出一个单词。如果约翰能赢得比赛,则输出“John”,否则输出“Brother”

,请注意单词的大小写。

Sample Input

2

3

3 5 1

1

1

Sample Output

John

Brother

前言

定义\(mex\)函数的值为不属于集合\(S\)中的最小非负整数,即:

\[mex(S)=min\lbrace x \rbrace(x\notin S,x \in N)
\]

例如\(mex(\lbrace 0,2,4\rbrace)=1\)。 对于状态\(x\)和它的所有\(k\)个后继状态\(y_1,y_2,...,y_n\),定义\(SG\)函数:

\[SG(x)=mex\lbrace SG (y_1),SG(y_2),...SG(y_n)\rbrace
\]

有向图游戏的和的SG函数值等于它包含的各个子游戏SG函数值的异或和,即:

\[SG(G)=SG(G_1)\bigoplus SG(G_2)\bigoplus ...\bigoplus SG(G_n)
\]

解题报告

我们先考虑剩下石堆石子数都为1的情况。当石堆的个数为奇数时,此时处于必输态(SG值=奇数个1异或=1),反则当石堆的个数为偶数时处于必赢态(SG值=0)。

如果剩下石堆石子数存在至少两个石堆大于1的情况,如果此时SG值不等于0,由于\(SG(G)=SG(G_1)\bigoplus SG(G_2)\bigoplus ...\bigoplus SG(G_n)\),设\(SG(G)\)的二进制表示下最高位的1在第k位,你们至少存在一堆石子\(SG(G_i)\),它的第k位是1。显然\(SG(G_i) \bigoplus x<SG(G_i)\),我们从第\(i\)堆取走若干石子,相当于\(SG(G_i) \bigoplus x\),而\(x \bigoplus x=0\)。所以我们可以通过在一个石子堆里取走若干石子将总的\(SG\)值变为0。

如果只有一个石堆大于1,那么先手总可以让全1的石堆的个数变为奇数个。

结论

1、当剩下石堆石子数都为1的时,总SG值等于0必胜。

2、当剩下石堆石头数有一个大于1的时候,总SG值大于1必胜。

代码

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 2e5+10;
int main(){
int T;
cin>>T;
while(T--)
{
int n,x,ans=0;
cin>>n;
int flag=1;
for(int i=1;i<=n;i++)
{
cin>>x;
ans^=x;
if(x!=1)
flag=0;
}
if((flag&&!ans)||(!flag&&ans))
{
printf("John\n");
}
else
printf("Brother\n");
}
return 0;
}

参考资料

https://wenku.baidu.com/view/25540742a8956bec0975e3a8.html

https://oi-wiki.org/math/game-theory/

【BZOJ 1022】 [SHOI2008]小约翰的游戏John(Anti_SG)的更多相关文章

  1. bzoj 1022: [SHOI2008]小约翰的游戏John anti_nim游戏

    1022: [SHOI2008]小约翰的游戏John Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1189  Solved: 734[Submit][ ...

  2. BZOJ 1022 [SHOI2008]小约翰的游戏John

    1022: [SHOI2008]小约翰的游戏John Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1635  Solved: 1036[Submit] ...

  3. BZOJ 1022 [SHOI2008]小约翰的游戏John AntiNim游戏

    1022: [SHOI2008]小约翰的游戏John Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1475  Solved: 932[Submit][ ...

  4. BZOJ 1022: [SHOI2008]小约翰的游戏John (Anti-nim)

    Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3134  Solved: 2003[Submit][Status][Discuss] Descripti ...

  5. BZOJ 1022: [SHOI2008]小约翰的游戏John【anti-SG】

    Description 小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有n堆石子,小约翰和他的哥哥轮流取石子,每个人取的时候,可以随意选择一堆石子,在这堆石子中取走任意多的石子,但不能一粒石子也不取 ...

  6. BZOJ 1022 SHOI2008 小约翰的游戏John 博弈论

    题目大意:反Nim游戏,即取走最后一个的人输 首先状态1:假设全部的堆都是1,那么堆数为偶先手必胜,否则先手必败 然后状态2:假设有两个堆数量同样且不为1,那么后手拥有控场能力,即: 若先手拿走一堆, ...

  7. BZOJ 1022: [SHOI2008]小约翰的游戏John [SJ定理]

    传送门 $anti-nim$游戏,$SJ$定理裸题 规定所有单一游戏$sg=0$结束 先手必胜: $1.\ sg \neq 0,\ 某个单一游戏sg >1$ $2.\ sg = 0,\ 没有单一 ...

  8. BZOJ.1022.[SHOI2008]小约翰的游戏John(博弈论 Anti-Nim)

    题目链接 Anti-Nim游戏: 先手必胜当且仅当: 1.所有堆的石子数为1,且异或和为0 2.至少有一堆石子数>1,且异或和不为0 简要证明: 对于1:若异或和为1,则有奇数堆:异或和为0,则 ...

  9. 51nod 1069 Nim游戏 + BZOJ 1022: [SHOI2008]小约翰的游戏John(Nim游戏和Anti-Nim游戏)

    首先,51nod的那道题就是最简单的尼姆博弈问题. 尼姆博弈主要就是判断奇异局势,现在我们就假设有三个石子堆,最简单的(0,n,n)就是一个奇异局势,因为无论先手怎么拿,后手总是可以在另一堆里拿走相同 ...

  10. bzoj 1022: [SHOI2008]小约翰的游戏John【anti-nim】

    如果全是1,那么n是奇数先手必败 否则,xor和为0先手必败 证明见 https://www.cnblogs.com/Wolfycz/p/8430991.html #include<iostre ...

随机推荐

  1. Codeforces Round #617 (Div. 3) D. Fight with Monsters

    D : Fight with Monsters 题目大意 : 有一组数,每个值对应着一个怪物的 hp 值,现在有两个人,一个自己一个对手,每个人有一个攻击值, 两个人轮流攻击怪物,如果是自己将怪物先打 ...

  2. 手把手带你阅读Mybatis源码(二)执行篇

    前言 上一篇文章提到了MyBatis是如何构建配置类的,也说了MyBatis在运行过程中主要分为两个阶段,第一是构建,第二就是执行,所以这篇文章会带大家来了解一下MyBatis是如何从构建完毕,到执行 ...

  3. javascript json语句 与 js语句的互转

    //var data = "weihexin" //var data = ["weihexin", 1] var data = {name:"weih ...

  4. 各类JWT库(java)的使用与评价

    [搬运工] 出处:http://andaily.com/blog/?p=956 在 https://jwt.io/ 网站中收录有各类语言的JWT库实现(有关JWT详细介绍请访问 https://jwt ...

  5. linux入门系列13--磁盘管理之RAID、LVM技术

    前一篇文章学习了磁盘分区.格式化.挂载等相关知识,本文将讲解RAID和LVM技术. 磁盘管理操作主要是运维人员用的较多,如果只是单纯的开发人员,可以先略过本文.但是在很多小公司里往往都是一人多用,运维 ...

  6. React中使用 PropTypes 进行类型检查

    官方文档学习链接:https://zh-hans.reactjs.org/docs/typechecking-with-proptypes.html import React, { Component ...

  7. 配置nginx代理服务器访问tomcat服务

    nginx原配置文件如下: #user nobody; worker_processes ; #error_log logs/error.log; #error_log logs/error.log ...

  8. Windows CMD 输出文本到文件,不加换行符

    >test.txt set /p="Hello" <nul >>test.txt set /p=" world!" <nul 正文 ...

  9. 微服务SpringCloud(一)

    Spring Cloud微服务(一) 什么是Spring Cloud 简单来说,Spring Cloud是一个微服务框架的规范,注意,只是规范,他不是任何具体的框架.Spring Cloud 为最常见 ...

  10. 五种编程语言解释数据结构与算法——顺序表2(java与C++语言实现)

    5.java实现方式: 5.1.顺序表的抽象结构 package com.xgp.顺序表; public interface MyList<T> { //1. initList(& ...